• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, January 13, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Study identifies interaction site for serotonin type 3A and RIC-3 chaperone

Bioengineer by Bioengineer
February 4, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: TTUHSC

To address the receptor dysfunction associated with several serious neurological diseases, Michaela Jansen, Pharm.D., Ph.D., from the Texas Tech University Health Sciences Center School of Medicine recently completed a study that provides novel insights into a protein-protein interaction that may one day lead to more effective treatments for these disorders. The study, “Delineating the site of interaction of the 5-HT3A receptor with the chaperone protein RIC-3,” was recently published in Biophysical Journal.

Serotonin type 3A (5-HT3A) is a member of the protein superfamily known as pentameric ligand-gated ion channels (pLGIC). These channels, primarily located within the central and peripheral nervous systems, act as neurotransmitter receptors, a type of receptor that binds with neurotransmitters rather than other molecules and produces an electrical signal by managing ion channel activity. When they don’t function properly, these proteins have been linked to Alzheimer’s disease, Parkinson’s disease, epilepsy, schizophrenia, alcohol addiction and myasthenia gravis, a chronic autoimmune disease that causes certain muscles to weaken.

Members of the pLGIC superfamily are assembled from five subunits, each of which consists of three domains: the extracellular domain (ECD), the transmembrane domain (TMD) and the intracellular domain (ICD).

In previous research, Jansen and her team showed that the ICD of 5-HT3A interacts with a chaperone protein known as Resistance to Inhibitors of Cholinesterase 3 (RIC-3). Chaperone proteins like RIC-3 help the subunits of pLGIC proteins, like 5-HT3A, assemble and function properly.

“For this study, we specifically looked at the serotonin-gated ion channel; it’s a good model system because you have five times the same subunit within one channel, which makes it somewhat easier to study” Jansen said. “Clinically, it’s important for drugs that, for example, are used to treat very severe nausea and vomiting during cancer treatment with chemotherapeutic agents. So we use this receptor a lot as a model system.”

The ICD for 5-HT3A consists of 115 amino acids linked together in a peptide chain. Though her team had demonstrated previously that the ICD is required and sufficient for the chaperone protein to act, they didn’t know which segment of amino acids along the ICD chain supported the interaction between the receptor protein 5-HT3A and the RIC-3 chaperone protein.

“With this study, we show that the very first segment, which consists of 24 amino acids, is essentially all that’s needed for the interaction,” Jansen said. “Interestingly, this segment contains a short alpha helix that we think is conserved across other members of the ion channel super family, so this will help us to apply what we learned here to several related channels.”

Specifically, Jansen said, her team investigated which sites of the 5-HT3A and the RIC-3 have to fit together so that the machinery that leads to assembly can work. This is important because the number of receptors in the brain is disturbed in some diseases.

For example, many times the number of channels is altered for Alzheimer’s disease, so understanding how this protein-protein assembly works could help researchers design drugs that mimic the interaction. Jansen believes this could help, in a pharmacological way, to correct the receptor numbers in the brain.

“This is important because if you know this part, and the structure of it is known, then you could say, ‘OK, let’s make a drug that binds to the surface of the segment,'” Jansen said. “This can help us with regulating receptor numbers for Alzheimer’s disease; you have the lock, now you can design the key for it because you know the structure of this segment. This is what is needed for structure-guided drug design; you can conceptualize a small drug-like molecule and then investigate if that works to interfere with processes that are not functioning in certain disease states.”

Having narrowed down the important role 5-HT3A plays in this protein-protein interaction, Jansen and her team will go back and similarly investigate RIC-3.

“When we do that, we’ll more fully understand the two detailed parts that need to interact,” Jansen said. “I think that would compliment this study and be a good step forward.”

###

Media Contact
Suzanna Cisneros
[email protected]
806-773-4242

Related Journal Article

http://dx.doi.org/10.1016/j.bpj.2019.11.3380

Tags: AlzheimerBiomechanics/BiophysicsCell BiologyMedicine/HealthMolecular BiologyneurobiologyPharmaceutical SciencesPhysiology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Thermal [2+2] Cycloaddition Builds Gem-Difluoro Bicycloalkanes

January 13, 2026
blank

Cobalt-Catalyzed Thioester Coupling via Siloxycarbene

January 12, 2026

Advancing Alkene Chemistry: Homologative Difunctionalization Breakthrough

January 8, 2026

Biocompatible Ligand Enables Safe In-Cell Protein Arylation

January 8, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    146 shares
    Share 58 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    72 shares
    Share 29 Tweet 18
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Carvacrol and Chloroquine Synergistically Halt Melanoma Metastasis

Venetoclax plus ML385 defeats AML chemotherapy resistance

Hesperidin Nanoparticles Boost Kidney and Cancer Defense

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.