• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Antiarrhythmic drug identified as potential treatment for pulmonary arterial hypertension

Bioengineer by Bioengineer
December 12, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Findings reported in The American Journal of Pathology suggest dofetilide may counteract pathological changes in potassium channels associated with pulmonary arterial hypertension in humans and rats

IMAGE

Credit: Shults, N.V., Rybka, V., Suzuki, Y.J., and Brelidze, T.I.


Philadelphia, December 12, 2019 – High blood pressure in the lungs, known as pulmonary arterial hypertension (PAH), is a potentially fatal disease caused by obstruction of blood flow in the lungs. A new study in The American Journal of Pathology, published by Elsevier, sheds light on the pathology underlying PAH and shows that dofetilide, an FDA-approved KV11.1 channel blocker for the treatment of cardiac arrhythmias (brand name: Tikosyn), may be used for treatment of PAH.

Kv11.1 potassium selective channels are recognized for their function in the heart. Despite the importance of Kv11.1 channels for many physiological processes, their expression and function in pulmonary vasculature and potential role in PAH- and chronic obstructive pulmonary disease (COPD)-associated vascular remodeling had not been investigated.

Investigators examined lung tissue from patients with COPD and rats with experimentally-induced PAH. “Our study suggests that Kv11.1 channel blockers may have therapeutic potential for treatment of PAH. Specifically, we have shown that dofetilide, which is already FDA-approved as an antiarrhythmic and therefore has passed all of the drug safety requirements, can be considered for repurposing for treatment of patients with PAH,” explained Tinatin I. Brelidze, PhD, assistant professor of pharmacology in the Department of Pharmacology and Physiology at Georgetown University Medical Center, Washington, DC, USA.

Researchers observed that Kv11.1 potassium selective channels are expressed in lungs and blocking these channels with dofetilide inhibits PAH associated with vascular remodeling. In control rats, Kv11.1 channels were expressed in the smooth muscle cell (SMC) layer of large diameter pulmonary arteries (PAs), but not in the SMCs of small diameter PAs (less than 100 μm). In rats with experimentally-induced PAH, the expression of Kv11.1 channels increased and the channels were found in both small and large PAs. The PA walls thickened as they became more muscular, and the lumens shrank.

When rats with PAH were treated with dofetilide, there was no evidence of the typical pathological changes in the vasculature associated with PAH. Dofetilide increased lumen diameter and decreased PA wall thickness to levels seen in the control rats without PAH.

In healthy human lung tissue, Kv11.1 channels were present only in the walls of large-diameter PAs. Lung tissue from patients with COPD showed collapse of alveoli, mild edema of the arterial walls, and fibrosis and thickening of PA walls. Kv11.1 channels were found in the walls of both large and small PAs, similar to that reported in rats with PAH.

Kv11.1 potassium channels are voltage-activated potassium channels that are expressed in many tissues and organs of the body. In the heart, Kv11.1 potassium channels help to repolarize cardiac action potentials to maintain proper heart rhythm whereas, in the brain, Kv11.1 channels regulate neuronal excitability. Inhibition of Kv11.1 channels also likely decreases the proliferation of cancer cells. “We hypothesize that similar to cancer, enlargement of SMCs in PAH is associated with the overexpression of Kv11.1 channels,” noted Dr. Brelidze.

Since there is extensive clinical experience with dofetilide for cardiac arrhythmias and it has passed all drug safety requirements, the investigators suggest it merits consideration as a potential treatment for patients with PAH.

###

Media Contact
Eileen Leahy
[email protected]
732-238-3628

Related Journal Article

http://dx.doi.org/10.1016/j.ajpath.2019.09.010

Tags: CardiologyMedicine/HealthPharmaceutical SciencePhysiologyPulmonary/Respiratory Medicine
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Hanbat National University Researchers Develop Innovative Method to Enhance Solid Oxide Fuel Cell Efficiency

October 3, 2025
Rice membrane extracts lithium from brine faster and with reduced waste

Rice membrane extracts lithium from brine faster and with reduced waste

October 2, 2025

Pseudokinases Drive Peptide Cyclization via Thioether Crosslinking

October 2, 2025

MIT Researchers Develop Simple Formula to Enhance Fast-Charging, Durable Batteries

October 2, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    92 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    86 shares
    Share 34 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Physiologically Relevant Intermediate State of Potassium Channel

AI-Driven Multi-Modal Flexible Robots with Self-Learning

Identifying Healthcare Waste Behavior: An Australian Case Study

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.