• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

How light a foldable and long-lasting battery can be?

Bioengineer by Bioengineer
December 11, 2019
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Soojin Park(POSTECH)

With the launch of wearable devices and smartphones that require high capacity of electricity such as foldable phones and 5G phones, the interest in batteries are increasing and various battery types are developed. For example, flexible batteries embedded in the mobile watch band or wireless power sharing batteries that have developed from wireless charging. However, there is no manufacturing of a battery that produces a battery with thousands milliamp Hour (mAh) capacity to be foldable. Recently, a research team from Korea developed a monolithic electrode that can replace heavy copper collectors and enabled development of a flexible battery with high capacity.

Professor Soojin Park of Chemistry and Division of Advanced Materials Science with his postdoctoral researcher, Jaegeon Ryu and his PhD student, Jieun Kang successfully developed a flexible battery with thin and three-dimensional organic electrode in collaboration with Korea Institute of Materials Science.

Furthermore, they were able to lower the weight of a battery by 10 times more than the conventional copper collector1) by using a three-dimensional copper collector. Instead of using a graphite anode, they utilized organic materials and were able to increase the energy density of a battery by four times and more. Their research establishment was published in the recent issue of ACS Nano.

Electrical conductivity of an organic material is low and there was no solution to integrate collector and organic material. For this reason, it had not been possible to demonstrate a monolithic electrode with organic materials before their study. The research team studied a new way to replace a current collector that makes a battery heavy and a graphite anode with low energy density in order to lower the weight of battery innovatively.

The team produced a three-dimensional structure with high electrical conductivity by using single-walled carbon nanotube (SWCNT) aerogels. Here, they constructed thin monolithic organic electrodes by coating a nanometer-scale imide-based network (IBN)2) organic material.

The three-dimensional monolithic electrodes coated with 8nm thin and adjustable thick organic IBN layers delivered capacity of up to 1550 mA h g-1 and were possible to recharge more than 800 times. These electrodes were coated with organic materials. Despite of their poor intrinsic electrical conductivity, they had high electrical conductivity and they also demonstrated improved electrochemical performances of rechargeable battery by helping fast transfer of lithium through abundant redox-active sites. Moreover, thickness of coated organic materials can be controlled easily and they were able to improve current density of organic electrode greatly.

The newly developed electrode can replace the metal-based collector and this enables development of light and flexible rechargeable battery which later can be applied to wearable electronic devices, flexible devices, telecommunication and electronic vehicles of next generation.

Professor Soojin Park who led the research commented, “We can lower the weight of a rechargeable battery enormously by using this newly developed monolithic electrode with SWCNT organic materials. This can overcome the limitations of the conventional rechargeable battery and can realize flexibility and weight lightening of an organic battery.

###

This research was supported by the National Research Foundation of Korea.

Media Contact
Jinyoung Huh
[email protected]
82-542-792-415

Original Source

http://postech.ac.kr/eng/how-light-a-foldable-and-long-lasting-battery-can-be/?pageds=1&k=&c=

Related Journal Article

http://dx.doi.org/10.1021/acsnano.9b07807

Tags: Chemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsElectromagneticsIndustrial Engineering/ChemistryMaterialsPharmaceutical/Combinatorial ChemistrySuperconductors/Semiconductors
Share12Tweet8Share2ShareShareShare2

Related Posts

Exploring the Limits of Nuclear Stability: Multi-Step Fragmentation of High-Energy Projectiles in Thick Targets

Exploring the Limits of Nuclear Stability: Multi-Step Fragmentation of High-Energy Projectiles in Thick Targets

August 7, 2025
blank

Cicadas Harmonize Their Songs with the First Light of Dawn

August 6, 2025

Sure! Here are a few rewritten versions of the headline “Friction which cools” for a science magazine post: 1. “How Friction Can Cool Instead of Heat: The Science Explained” 2. “The Surprising Cooling Effect of Friction” 3. “When Friction Cools: A New Twist in Energy Science” 4. “Cooling Through Friction: Challenging Conventional Wisdom” 5. “The Unexpected Chill of Friction: Breaking the Heat Stereotype” Let me know if you’d like it tailored to a specific audience or style!

August 6, 2025

Innovative Sound Shield Reduces Noise While Allowing Airflow

August 6, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    75 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Elranatamab Outperforms UK Real-World Myeloma Treatments

    40 shares
    Share 16 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Initial Heartbeats Guide the Heart’s Development and Growth

Stronger El Niños Shrink Tropical Arthropod Diversity

Microbiome Enhances Flavor in Berbassa Fermented Milk

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.