• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Probing the role of an inflammation resolution sensor in obesity and heart failure

Bioengineer by Bioengineer
November 20, 2019
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A mouse-model study of the sensor will aid the search for treatments to delay human heart failure, which often follows a heart attack.

IMAGE

Credit: UAB


BIRMINGHAM, Ala. – After heart attack injury, several fatty-acid-derived bioactive molecules — including one called resolvin D1 — play an essential signaling role to safely clear inflammation and help repair heart muscle. The mechanism of how this resolution occurs is not well-understood.

There is a receptor on the surface of many immune cells called ALX/FRP2, and in models of atherosclerosis, ALX/FPR2 is known to act as a sensor to help resolve inflammation.

In a 2015 study using a mouse model, University of Alabama at Birmingham researcher Ganesh Halade, Ph.D., observed that, after heart attack injury, ALX/FPR2 was highly expressed in immune myeloid cells and was activated by resolvin D1 in immune cells in the spleen and in immune cells at the heart attack site. The result was an expedited resolution of the heart attack injury. Resolvin D1 is one of the omega 3 fatty-acid metabolites known as specialized pro-resolving mediators, or SPMs, that help clear inflammation.

Now, Halade and colleagues at UAB, Boston and France have used mice that completely lack ALX/FPR2 to learn more about the pathways this resolution sensor uses to target inflammation. Such knowledge will help in finding treatments to delay the human heart failure that often follows a heart attack.

Before beginning the mouse studies, Halade and colleagues examined heart muscle tissue from patients with heart failure. They found that ALX/FPR2 was plentiful in these human ischemic hearts, and it was located in the cytoplasm of the myocardium cells. In contrast, in healthy human heart tissue, ALX/FPR2 was limited to the cell membrane. To learn more, they then expanded study of the precise and comprehensive role of the resolution receptor using mice having an ALX/FPR2 gene deletion.

The researchers found that mice lacking ALX/FPR2 showed spontaneous, age-related obesity. With the obesity, the ALX/FPR2-null mice developed heart disease that weakened the heart’s ability to pump blood, and they had a shortened lifespan with aging. The aging mice also developed kidney inflammation, as shown by increased inflammation markers like NGAL, TNF-alpha and CCL2, and elevated plasma creatinine levels.

After a heart attack in normal mice, leukocyte immune cells in the spleen produce SPMs. However, in the ALX/FPR2-null mice, the researchers found lower levels of SPMs in the heart and the spleen after heart attack, indicative of non-resolving inflammation. Halade says this suggested impaired cross-talk between the injured heart and splenic leukocytes, a cross-talk that is required for the resolution of inflammation. In addition to the lower levels of SPMs, the ALX/FPR2-null mice showed dysregulation of several immune responsive enzymes — lower levels of LOX enzymes and increased levels of the pro-inflammatory COX-1 and COX-2 enzymes.

Finally, the ALX/FPR2-null mice showed impairment of activated macrophage cells to phagocytose — that is, to “eat” infecting microbes or dead human cells, one of the macrophage’s prime functions. After heart attack, the ALX/FPR2-null mice had increased numbers of neutrophils, the first phagocytic responders after heart injury, in both the spleen and the left ventricle of the heart. Also, there were reduced numbers of reparative macrophages in both the spleen and the heart.

Altogether, says Halade, an associate professor in the UAB Department of Medicine Division of Cardiovascular Disease, these findings demonstrate the integrative role of ALX/FPR2 as a primary target to manage cardiometabolic health, inflammation-resolution processes and cardiorenal syndrome in aging.

###

Co-authors with Halade of the study published in Molecular Metabolism, “Lack of resolution sensor drives age-related cardiometabolic and cardiorenal defects and impedes inflammation-resolution in heart failure,” are Bochra Tourki, Vasundhara Kain, Amanda B. Pullen, Nirav Patel and Pankaj Arora, Division of Cardiovascular Disease, UAB Department of Medicine; Paul C. Norris and Charles N. Serhan, Harvard Medical School; and Xavier Leroy, Domain Therapeutics, Steinsoultz, Alsace, France.

Support came from National Institutes of Health grants HL132989 and HL144788, and American Heart Association postdoctoral fellowship POST31000008.

Media Contact
Jeff Hansen
[email protected]
205-209-2355

Original Source

https://www.uab.edu/news/research/item/10930-elucidating-the-integrative-role-of-an-inflammation-resolution-sensor-in-heart-failure

Related Journal Article

http://dx.doi.org/10.1016/j.molmet.2019.10.008

Tags: CardiologyCell BiologyDiet/Body WeightMedicine/HealthMortality/LongevityNutrition/NutrientsPhysiology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Assessing Gaming Disorder Tests in Hong Kong Students

August 11, 2025
blank

New Cancer Drug Enhances Chemotherapy Success, Overcoming Resistance in Tumors

August 11, 2025

Human-Specific Genes, Shared Processes in Adult Neurogenesis

August 11, 2025

Boosting Frontostriatal Health to Combat OCD

August 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    139 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    78 shares
    Share 31 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    57 shares
    Share 23 Tweet 14
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Assessing Gaming Disorder Tests in Hong Kong Students

Nanofiltration and Microbial Fuel Cells for Water Purification

Connecting Mitochondria and Microbiota: Targeting Extracellular Vesicles in 2025 to Unlock Revolutionary Medical Pathways

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.