• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

NASA, industry partner for space-based study of potential Alzheimer’s key

Bioengineer by Bioengineer
November 12, 2019
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

An innovative experiment underway on the International Space Station could help researchers make new progress in the fight against aggressive neurodegenerative diseases such as Alzheimer’s and Parkinson’s

IMAGE

Credit: NASA/Kevin Depew

An innovative experiment underway on the International Space Station could help researchers make new progress in the fight against aggressive neurodegenerative diseases such as Alzheimer’s and Parkinson’s.

The Ring-Sheared Drop experiment, developed and led by Teledyne Brown Engineering of Huntsville, Alabama, will be housed in the station’s Microgravity Science Glovebox to enable study of the formation of potentially destructive amyloid fibrils, or protein clusters, like those found in the brain tissue of patients battling neurodegenerative diseases. Such illnesses may cause neurons, the drivers of the human nervous system, to become damaged or inoperative.

Normal brain functions may be disrupted by amyloid fibrils. These proteins can denature — or lose characteristic properties — and precipitate out of solution. As they accumulate over time, they may disrupt the healthy function of tissues and organs. In cases of brain function and diseases such as Alzheimer’s, that disruption can be profoundly debilitating and even fatal.

“This project is a prime example of the amazing discoveries and advancements possible with partnering between NASA, research and industry,” said Jan Hess, president of Teledyne Brown. “Our hope is that this experiment brings the scientific community closer to unlocking the mysteries of this life-altering disease that affects so many people worldwide every day.”

In Earth-based experiments, researchers determined that amyloid fibrils may be created by shear flow, or the difference in flow velocity between adjacent layers of a liquid. In the case of ground experiments, that formation is affected by the presence of container walls and by convection, or the circular motion that occurs when warmer liquid rises while cooler liquid descends.

The goal now is to conduct experiments in microgravity — in a containerless reactor — where the liquid specimens form spherical drops, containing themselves via surface tension. Researchers will “pin” a droplet of liquid between two rings and cultivate amyloid fibrils for study.

“Experimentation in microgravity affords the opportunity to study amyloid fibril formation under conditions that eliminate unwanted effects such as contact with solid walls which can affect the results of normal laboratory experiments,” said Kevin Depew, a researcher in the ISS Projects Office, part of the Human Exploration Development and Operations Office at NASA’s Marshall Space Flight Center in Huntsville. “The team has worked very hard and we are expecting a great return.”

###

The project partners, led by principal investigator Amir Hirsa at Rensselaer Polytechnic Institute of Troy, New York, also seek to extend the value of their innovative experiment hardware for other uses, adapting the Ring-Sheared Drop facility as a space-based bioreactor, customizable for other fluid studies or to grow and study cells, bacteria, algae and other materials.

The experiment was launched to the station in July on a SpaceX commercial resupply services mission. Experiments began in September, and the study is expected to continue at least two years. Under contract to Marshall, Teledyne Brown developed the hardware with funding from the Space Life & Physical Sciences Research & Applications Division of NASA’s Human Exploration & Operations Mission Directorate. Rensselaer Polytechnic Institute and Emerald City Initiatives of Huntsville also partnered on the project. Marshall manages the Microgravity Science Glovebox for NASA.

Media Contact
Gary Jordan
[email protected]
281-792-7929

Original Source

http://www.nasa.gov/centers/marshall/news/industry-partner-for-space-based-study-of-alzheimers-key.html

Tags: AlzheimerMedicine/Healthneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Probiotics Alleviate Ovarian Angiogenesis in PCOS Models

October 2, 2025

Gene Variants Linked to Antipsychotic-Induced Movement Disorders

October 2, 2025

Brain Activity Changes in Epilepsy and Cognitive Impairment

October 2, 2025

Mapping Ovarian Cortex Cell Subpopulations with Flow Cytometry

October 2, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    69 shares
    Share 28 Tweet 17
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Probiotics Alleviate Ovarian Angiogenesis in PCOS Models

Gene Variants Linked to Antipsychotic-Induced Movement Disorders

Key Genes for Fish Adaptation: Spotlight on Mechanisms

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.