• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Salk scientists find way to quantify how well cutting-edge microscopy technique works

Bioengineer by Bioengineer
October 4, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New approach helps researchers determine the resolution of cryo-EM, leading to better methods of imaging proteins

IMAGE

Credit: Salk Institute

In 2017, Salk scientists reported that tilting a frozen protein sample as it sat under an electron microscope was an effective approach to acquiring better information about its structure and helping researchers understand a host of diseases ranging from HIV to cancer. Now, they have developed a mathematical framework that underlies some of those initial observations.

Their new study, published in Progress in Biophysics and Molecular Biology on September 13, 2019, provides a foundation for quantitatively determining how differences in viewing angles affect the resulting 3D structures of proteins, and could help other researchers determine the best setup for experiments to improve the imaging technique called cryo-EM.

“This provides a quantitative understanding for why variations in viewing angles affect the quality of resulting 3D structures of proteins, and where we could do better to improve the data,” says Dmitry Lyumkis, a Salk assistant professor of genetics and coauthor of the new work. “These kinds of theoretical frameworks are important to understanding precisely how information is attenuated due to imperfections associated with the imaging experiment, which will lead us to eventually get better structures out of cryo-EM data.”

In cryo-EM, or cryogenic electron microscopy, proteins are rapidly frozen in their natural form before being bombarded with electrons. By detecting how the electrons scatter when they hit the sample, researchers can determine the molecular structure of the protein or protein complex. Compared to other imaging methods, it’s easier for scientists to prepare proteins for cryo-EM, and the technique can potentially address a broader set of questions in structural biology. However, a long-standing problem in cryo-EM is that proteins tend to stick to the top or bottom of the sample grid that they’re prepared on. These select orientations mean that researchers can’t always see a protein’s structure from every angle. Tilting the sample, Lyumkis and his colleagues found in 2017, helped solve this problem.

“We knew that qualitatively, tilting improved the data in some cases,” says Lyumkis. “What we didn’t know was exactly the extent to which the structures can be affected by variations in the viewing angle.”

Recently, Philip Baldwin, a senior staff researcher at Salk and the paper’s coauthor, was examining a set of cryo-EM data collected at different viewing angles when he noticed that such variations affected the overall resolution of the resulting protein structure. After some calculations, he realized that the association between the viewing angle and resolution was generalizable to all cryo-EM experiments.

The new formula lets researchers calculate, for any protein at any tilt angle, a number called the sampling compensation factor, or SCF. The closer the SCF value is to 1, the more complete the protein’s structure. If the SCF is 0.5 instead of 1, either the data is incomplete, or researchers must collect data for twice as long to get the same structural resolution. By calculating SCF values ahead of an experiment, scientists can optimize their tilt angle and data collection time.

The new quantitative formulations also helped Lyumkis and Baldwin compute just how incomplete some cryo-EM datasets are. Previously, they might have had to eyeball a set of data and guess whether it was a good or bad approximation of a protein’s structure. Now, the SCF can tell them that numerically.

“It’s very handy,” says Baldwin. “Basically, this formula tells you if you have very bad regions of the protein from which you didn’t collect data.”

Lyumkis and Baldwin hope that using the formula to assess cryo-EM results–which involves a simple calculation or piece of code–will become standard and help guide experiments and new approaches to cryo-EM. This would lead to faster discoveries in basic biological sciences and in drug development.

The work reflects a growing trend at both the Salk Institute and elsewhere toward integrating computational approaches into biology research.

###

Lyumkis and Baldwin were supported by grants from the National Institutes of Health.

About the Salk Institute for Biological Studies:

Every cure has a starting point. The Salk Institute embodies Jonas Salk’s mission to dare to make dreams into reality. Its internationally renowned and award-winning scientists explore the very foundations of life, seeking new understandings in neuroscience, genetics, immunology, plant biology and more. The Institute is an independent nonprofit organization and architectural landmark: small by choice, intimate by nature and fearless in the face of any challenge. Be it cancer or Alzheimer’s, aging or diabetes, Salk is where cures begin. Learn more at: salk.edu.

Media Contact
Salk Communications
[email protected]

Original Source

https://www.salk.edu/news-release/salk-scientists-find-way-to-quantify-how-well-cutting-edge-microscopy-technique-works/

Related Journal Article

http://dx.doi.org/10.1016/j.pbiomolbio.2019.09.002

Tags: BiologyBiotechnologyCell BiologyChemistry/Physics/Materials SciencesGeneticsMolecular BiologyOptics
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Think you can outsmart an island fox? Think again!

August 21, 2025
blank

California’s dwarf Channel Island foxes have relatively larger brains than their bigger mainland gray fox cousins, revealing unique island-driven evolution

August 21, 2025

Why Do Some People Age Faster? Study Identifies Key Genes Involved

August 21, 2025

Tidal Forces Spur the Rise of Urban Civilization in Southern Mesopotamia

August 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Multicenter Study Reveals Clinical and Microbiological Profiles of Bacterial Infections in Chinese Liver Cirrhosis Patients and Their Antibiotic Treatments

Proximity Screening Boosts Graphene’s Electronic Quality

Revolutionary Laser Technique Simplifies Production of High-Performance Alloy Films

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.