• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Pancreatic cancer discovery reveals how the aggressive cancer fuels its growth

Bioengineer by Bioengineer
September 26, 2019
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Finding may explain why promising drugs work — and when they won’t

IMAGE

Credit: Dan Addison | UVA

A new discovery about pancreatic cancer sheds light on how the cancer fuels its growth and may help explain how promising cancer drugs work – and for whom they will fail.

The finding one day could help doctors determine which treatments will be most effective for patients, so that they get the best outcomes.

“Pancreatic cancer is a very difficult problem. It has been a very difficult problem for a long time. The survival for pancreatic cancer patients is very low compared to other tumors,” said researcher David F. Kashatus, PhD, of the University of Virginia School of Medicine and the UVA Cancer Center. “We’re really trying to understand the biology so that scientists and drug developers can be more informed as they try to tackle this disease. Any progress we can make, no matter how small, is going to be an improvement over the current state of affairs.”

A Big Mystery of Pancreatic Cancer

The new discovery represents the fulfillment of years of work for Kashatus, who first proposed the research project while interviewing at UVA in 2012. It also helps to answer an 80-year-old mystery: Why and how do cancers rewire cells to fuel themselves using a much more inefficient process?

Scientists previously have noted strange changes in the shape of mitochondria, the powerhouses of cells, in cancers driven by mutations in the RAS gene. Kashatus wanted to understand what was occurring and how it affected pancreatic cancer’s growth.

Kashatus found that when the mutated RAS gene gets activated, it causes the mitochondria to fragment. This fragmentation supports the earliest shifts toward the cancer’s new fueling process. This was quite surprising, because suddenly the mitochondria were playing a very unusual role. Their division was actually helping the cancer establish itself.

But there’s good news: This process could prove to be a weakness for the cancer that doctors could exploit to help patients. Kashatus found that blocking mitochondrial division in tumor samples largely prevented the tumors from growing. And when they did grow, the cancer cells gradually lost mitochondrial function. This was bad for the cancer, and the loss of mitochondria represents another weakness doctors could exploit.

“This mitochondrial fragmentation is really playing two distinct roles: On the one hand, it’s promoting this shift in metabolism. But it’s also promoting mitochondrial health,” Kashatus said. “These two things are combining to drive the pancreatic tumor growth process. So I think this is something that could be therapeutically valuable. But it also really teaches us about pancreatic tumor growth in general.”

Explaining How Cancer Drugs Work

The finding also may help explain the workings of several drugs in development, and it could help doctors understand which patients they will benefit, said Kashatus, of UVA’s Department of Microbiology, Immunology and Cancer Biology.

“Inhibiting [mitochondrial division in patients’ cancer cells] would be a nice future goal for us. However, the drugs targeting this process are really very early in development, and so it’s not something that will really be ready for the clinic anytime soon,” he said. “But this work can really help us understand how some of these other drugs that are a little bit further along in the process may be acting, so that we can better understand which patients may or may not benefit.”

###

Findings Published

Kashatus and his team have published their findings in the scientific journal Cell Reports. The research team consisted of Sarbajeet Nagdas, Jennifer A. Kashatus, Aldo Nascimento, Syed S. Hussain, Riley E. Trainor, Sarah R. Pollock, Sara J. Adair, Alex D. Michaels, Hiromi Sesaki, Edward B. Stelow, Todd W. Bauer and Kashatus.

The research was supported by the National Institutes of Health, grants CA200755 and GM123266.

To keep up with the latest medical research discoveries from UVA, subscribe to the Making of Medicine blog at http://makingofmedicine.virginia.edu.

Media Contact
Josh Barney
[email protected]

Original Source

https://newsroom.uvahealth.com/2019/09/26/pancreatic-cancer-discovery-reveals-how-the-aggressive-cancer-fuels-its-growth/

Related Journal Article

http://dx.doi.org/10.1016/j.celrep.2019.07.031

Tags: BiologycancerCarcinogensCell BiologyDeath/DyingDiagnosticsHealth Care Systems/ServicesMedicine/HealthMetabolism/Metabolic Diseases
Share14Tweet9Share2ShareShareShare2

Related Posts

Barriers and Boosters of Seniors’ Physical Activity in Karachi

February 7, 2026

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.