• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Scientists identify a possible new treatment for diabetic retinopathy

Bioengineer by Bioengineer
September 19, 2019
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Findings reported in The American Journal of Pathology suggest that an enzymatic precursor may be toxic to retinal cells in diabetic patients

IMAGE

Credit: The American Journal of Pathology

Philadelphia, September 19, 2019 – About one in three diabetic patients develops diabetic retinopathy (DR), which can impair vision and lead to blindness. A new study in The American Journal of Pathology, published by Elsevier, provides clear evidence that high glucose increases the levels of enzymatic precursor–lysyl oxidase propeptide (LOX-PP)–that promotes cell death, which was verified in an animal model of diabetes. These findings may help develop novel DR treatments by targeting LOX-PP or its metabolites.

‘We found that hyperglycemic and diabetic conditions increased LOX-PP levels,” explained lead investigator Sayon Roy, PhD, of the Departments of Medicine and Ophthalmology at Boston University School of Medicine, Boston, MA, USA. “LOX-PP may induce cell death by compromising a cell survival pathway, and in retinas of diabetic rats, increased LOX-PP contributed to retinal vascular cell death associated with DR. Administration of recombinant LOX-PP alone was sufficient to induce cell death. This report shows novel functionality of LOX-PP in mediating cell death under high glucose condition in retinal endothelial cells as well as in diabetic animals.”

Studies in pancreatic and breast cancer cells suggest that LOX-PP overexpression may trigger cell death. The researchers therefore studied the role of LOX-PP in the retinal tissue. The retinal blood vessels of normal and diabetic rats and normal rats administered artificially synthesized LOX-PP (recombinant LOX-PP, rLOX-PP) directly into the eye, were examined. Changes associated with DR such as swelling, blood vessel leakage, blockage or thickening of vascular walls, and histologic indicators such as acellular capillaries (AC) and pericyte loss (PL) were studied.

More AC and PL were observed in the retinas of diabetic rats compared to controls. In non-diabetic rats, injection of rLOX-PP directly into the eye also increased the number of ACs and PLs compared to rats receiving a control injection.

The effect of high glucose on retinal endothelial cells grown in culture was also studied. Adding glucose to the cell cultures up-regulated LOX-PP expression and reduced AKT (protein kinase B) activation. Cells exposed to rLOX-PP alone exhibited increased cell death along with decreased AKT phosphorylation. The present study provides clear evidence that high glucose increases LOX-PP levels, which in turn promotes cell death. Furthermore, LOX-PP appears to induce cell death by compromising a pathway involved in cell survival.

“DR is the leading cause of blindness in the working age population,” noted Dr. Roy. “Unfortunately, there is no cure for this devastating ocular complication. Our findings suggest a novel mechanism for high glucose-induced cell death involving LOX-PP, which may be a therapeutic target in preventing retinal vascular cell loss associated with DR.”

LOX is an extracellular enzyme responsible for cross-linking collagen and elastin molecules to form a stable extracellular matrix. The role of the LOX propeptide, LOX-PP, is less understood, although it may play a role in keeping LOX in an inactive state.

###

Media Contact
Eileen Leahy
[email protected]

Original Source

https://www.elsevier.com/about/press-releases/research-and-journals/scientists-identify-a-possible-new-treatment-for-diabetic-retinopathy

Related Journal Article

http://dx.doi.org/10.1016/j.ajpath.2019.06.004

Tags: Cell BiologyMedicine/HealthOphthalmologyPhysiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Parental Stress in Neurodevelopmental Disorders: Key Factors Revealed

November 1, 2025

Insights on Eosinophilic Granulomatosis with Polyangiitis: A Podcast

November 1, 2025

β-Hydroxybutyrate Protects Against Early Diabetic Kidney Disease

November 1, 2025

Novice Nurses Confront Patient Death: Insights from Iran

November 1, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1295 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Parental Stress in Neurodevelopmental Disorders: Key Factors Revealed

Insights on Eosinophilic Granulomatosis with Polyangiitis: A Podcast

Boosting Lettuce Yields with Steel Slag Compost Teas

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.