• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, December 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Is copper a cause of Alzheimer’s disease?

Bioengineer by Bioengineer
September 16, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

University of Houston researcher examines the link

IMAGE

Credit: University of Houston

A University of Houston chemist is exploring the link between copper protein molecules in brain cells and neurodegenerative diseases like Alzheimer’s.

“Scientists have studied Alzheimer’s disease for 100 years and still no one knows the cause,” said assistant professor of chemistry Tai-Yen Chen, who will use his $1.9 million award from the National Institute of General Medical Sciences to advance his theory that the balance of copper protein within a single cell may be a culprit.

Copper is an essential brain cell nutrient, helping neurons communicate, or relay messages, to each other. In healthy cells, the amount of copper is tightly regulated to stay at the proper levels. Scientists long ago found that people with Alzheimer’s have unusually high levels of copper in the beta amyloid plaques that are a signature of the disease.

“It was an unusual finding, and we want to know more about it,” said Chen, who will examine the biological regulation of copper to identify potential causes of diseases marked by abnormal amounts of copper in cells. Several diseases are linked to copper imbalances, including Menkes disease, a nervous system disorder marked by low levels of copper, and Wilson disease, a genetic disorder in which too much copper is present.

Little is known about how these metalloproteins are individually regulated or how they cooperate with each other in their native environment, living cells.

“We want to figure out how cells regulate or manipulate the copper inside them to maintain the optimum copper level,” said Chen, who will examine individual neuron and liver cells. “We will use a unique method, studying a single cell to examine its behavior, then repeat it on many of them to get information from the collective behavior.”

The research will provide mechanistic insights into metalloprotein-mediated copper uptake and secretion processes and copper distribution. To ensure his research outcomes will provide valuable insight into human health, Chen is using stem cells to recreate human neuron and liver cells with both normal copper levels and with copper deficiency.

“If we can figure out how copper regulation is different between normal and diseased cells, it will shed light on understanding the pathology of Alzheimer’s disease and other neurodegenerative diseases,” he said.

Chen is the first University of Houston researcher to receive the Maximizing Investigators Research Award from the National Institute of General Medical Sciences.

###

Media Contact
Laurie Fickman
[email protected]

Original Source

http://www.uh.edu/news-events/stories/2019/september-2019/091619-tai-yen-chen-copper-alzheimers.php

Tags: AlzheimerBiochemistryCell BiologyMedicine/HealthneurobiologyNeurochemistry
Share13Tweet8Share2ShareShareShare2

Related Posts

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

December 19, 2025
Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

December 11, 2025

Photoswitchable Olefins Enable Controlled Polymerization

December 11, 2025

Cation Hydration Entropy Controls Chloride Ion Diffusion

December 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    95 shares
    Share 38 Tweet 24
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    52 shares
    Share 21 Tweet 13
  • Nurses’ Views on Online Learning: Effects on Performance

    71 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Crossmodal Gene Data Enhances Cancer AI Predictions

Ambidextrous Leadership Boosts Innovation in Critical Care Nurses

Tracking Kids’ Weight Growth: Key Global Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.