• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Study reveals top tools for pinpointing genetic drivers of disease

Bioengineer by Bioengineer
July 25, 2019
in Cancer
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new benchmarking study has determined the best analysis tools for identifying errors in a patient’s DNA that are responsible for driving disease.

IMAGE

Credit: Walter and Eliza Hall Institute of Medical Research

Published in Nature Communications, the study is the largest of its kind and was led by Walter and Eliza Hall Institute computational biologists Professor Tony Papenfuss, Dr Daniel Cameron and Mr Leon Di Stefano.

The new study reveals the world’s top genomic rearrangement detection tools providing summaries on their performance and recommendations for use. Dr Cameron said the study could ultimately help clinicians determine the best treatments for their patients.

“Basically, you have to understand what is going wrong before you can work out how to fix the problem. In the context of cancer for instance, an understanding of the genetic mutations driving tumour growth could help oncologists determine the most appropriate treatment for their patients,” he said.

To determine the best genomic rearrangement detection methods, the researchers comprehensively tested 12 of the most widely used tools to see which ones could accurately identify the differences between a patient’s genetic information and the standard human reference genome. The findings revealed that a tool called GRIDSS, developed by Professor Papenfuss and Dr Cameron, was one of the best performing options, most accurately able to detect DNA rearrangements.

Dr Cameron said the study would not have been possible without the Institute’s high-performance computing resource.

“Over the course of two years, we tested 12 of the most popular genomic rearrangement detection tools, generating more than 50 terabytes of data, to determine which tools perform well, and when they perform badly. Without these computing resources, we estimate the study would have taken us more than ten years,” he said.

The Institute’s Theme Leader for Computational Biology Professor Papenfuss said computational methods were required, more than ever before, for making sense of vast and complex datasets being generated from research.

“Computational studies like this one keep the field up to date with best practice approaches for data analysis. This particular study provides a comprehensive resource for users of genomic rearrangement detection methods, as well as developers in the field. It will also help to direct the next iteration of genomic rearrangement tool development at the Institute,” he said.

As new experimental techniques and DNA sequencing machines become available, the very nature of the data they generate is changing. Professor Papenfuss said that older analysis tools, while heavily cited and widely used, could lead to erroneous interpretations if used on data produced by the latest DNA sequencing machines. “This is why it is so important for researchers to find the right match between the analysis tool and dataset at hand,” he said.

###

Computational biology is playing an increasingly important role in basic and translational research, making discoveries and enabling the development of more effective therapies through the use of the computer as the primary research tool and through the development of new algorithms. The Institute has around 100 bioinformaticians and computational biologists. With Professor Papenfuss leading this theme, the workforce will continue to grow through a mix of recruitment and training.

The study was supported by the Australian National Health and Medical Research Council, Lorenzo and Pamela Galli Charitable Trust, Victorian State Government Operational Infrastructure Support and Australian Government NHMRC Independent Research Institute Infrastructure Support.

Media Contact
Arunee Wilson
[email protected]

Original Source

https://www.wehi.edu.au/news/study-reveals-top-tools-pinpointing-genetic-drivers-disease

Tags: Algorithms/ModelsBioinformaticscancerComputer ScienceGeneticsMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Probiotic and Vincristine Combo Targets Cervical Cancer In Vitro

October 6, 2025

Exploring NK Cell Therapies for Solid Tumors

October 5, 2025

tRF-34-86J8WPMN1E8Y2Q Fuels Gastric Cancer Progression

October 4, 2025

Gut Microbiome and Hormones in Postmenopausal Breast Cancer

October 4, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    92 shares
    Share 37 Tweet 23
  • New Insights Suggest ALS May Be an Autoimmune Disease

    71 shares
    Share 28 Tweet 18
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary Memory Network Models Ionic-Electronic Interactions

New Survey Reveals Most Americans Recognize Life-Saving Power of Plasma Donation, But Few Have Participated

Exploring Physician Impact on Patient Length of Stay

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.