• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, December 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Cancer cells will become vulnerable

Bioengineer by Bioengineer
July 8, 2019
in Cancer
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

DNA secondary structures lead to gene mutations that increase the risk of cancer

The Researchers from HSE University (The Higher School of Economics) have used machine learning to discover that the two most widespread DNA structures – stem-loops and quadruplexes – cause genome mutations that lead to cancer. The results of the study were published in BMC Cancer.

In the early 2000s, researchers invented a new method to obtain the nucleotide sequence of DNA and RNA – Next-Generation Sequencing, NGS. This technology allows reading simultaneously several million genome regions, which had been impossible with earlier sequencing methods. Now, the human genome (genetic information) can be recorded in a text file weighing about 3.2 Gb.

‘Cancer is a genome disease,’ explains Maria Poptsova, Head of the HSE Laboratory of Bioinformatics and one of the study’s authors, ‘When we sequence the genome in a tumour tissue, we see a spectrum of different mutations. There may be point or large-scale mutations. For example, in point mutations, one nucleotide disappears and is replaced by another. We looked at large-scale mutations where parts of the genome (from several to millions of nucleotides) were deleted, reversed, copied, and inserted in a different place. As a result of these rearrangements, genome breakpoints appear.

HSE University researchers investigated the influence of two types of DNA secondary structures – stem-loops and quadruplexes – on genome breakpoints, with the use of machine learning. The authors analysed half a million breakpoints in over 2,000 genomes of ten types of cancer. Researchers looked for genomic hotspots, considering breakpoint hotspots to be the regions with frequent and recurrent rearrangements – in other words, risk zones. It appeared that the stem-loop-based model best explains blood, brain, liver, and prostate cancer breakpoint hotspot profiles, while quadruplex-based model has higher performance for bone, breast, ovary, pancreatic, and skin cancer.

The appearance of breakpoints cannot be explained exclusively by the impact of DNA secondary structures, but their contribution is at least 20-30%. The analysis demonstrates that the impact of stem-loops and quadruplexes on breakpoint evolution depends on the type of tissue, which is determined by epigenetic factors.

‘These are the kind of markers that distinguish different kinds of tissues over the genome,’ said Maria Poptsova. ‘We are actively studying the correlation between secondary DNA structures and epigenetic marks. English researchers have already looked at the impact of DNA secondary structures and epigenetic marks on point mutations. We focused on breakpoint hotspots and are the first to determine the contribution of the two most widespread genome structures – stem-loops and quadruplexes.’

According to the study’s authors, in the future, quadruplexes may be used as therapeutic targets. If drug therapy makes them more stable, the telomerase enzyme won’t be able to work in cancer cells, and they will become vulnerable.

###

Media Contact
Liudmila Mezentseva
[email protected]

Related Journal Article

https://iq.hse.ru/en/news/293160674.html
http://dx.doi.org/10.1186/s12885-019-5653-x

Tags: BiotechnologycancerCell BiologyGeneticsMedicine/Health
Share12Tweet7Share2ShareShareShare1

Related Posts

LC-MS Reveals MFER-Mc Treats Liver Cancer Pathways

December 27, 2025

LncRNA CYTOR’s Role in Triple-Negative Breast Cancer

December 27, 2025

MicroRNA and Oxidative Stress in Ovarian Cancer

December 27, 2025

RNA-Guided STAT3 Shapes T Cell Fate in NSCLC

December 27, 2025
Please login to join discussion

POPULAR NEWS

  • Robotic Waist Tether for Research Into Metabolic Cost of Walking

    NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    44 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Novice Nurse Patient Safety Training: A Quasi-Experimental Study

Maternal DNA Methylation Reveals Gestational Diabetes Indicators

Evaluating Accessibility of Radiation Oncology for Seniors

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.