• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Development of 3D particle model for single particles in battery electrodes

Bioengineer by Bioengineer
July 8, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Development of 3D electrochemical model to improve battery energy density and efficiency of electric vehicles

IMAGE

Credit: DGIST

A model that can have a 3D observation of micrometer-sized particles in a cell has been developed. Through the analysis and research of micrometer-sized particles in a cell, this model is expected to enhance energy efficiency of cells.

DGIST announced that Professor Yong Min Lee’s team in the Department of Energy Science & Engineering developed ‘micron1 single particle electrochemical model’ that can estimate the electrochemical properties of a single particle of electrode active materials2 in 3D. The 3D observations of the single particles of electrode active materials, which are difficult to be identified in an experiment, are expected to be applied to research electrochemical phenomena and particle designs that enhance cell efficiency.

Although a secondary cell is commonly used as the power source of electric vehicles, it is still not as efficient as internal combustion engine. Its efficiency can be improved by increasing the energy density of the cells, R&D has not been actively carried out due to the limitations in precise analysis technology.

Professor Lee’s team thought that the energy density of a cell can be enhanced through the design optimization of electrode active materials in a cell. Then, they sought a way to examine the micrometer-sized single particles of electrode active materials and developed electrochemical model that can conduct 3D analysis on the single particles.

Unlike the existing model that focused on cell electrode, the model developed by Professor Yong Min Lee’s team focused on the single particles of active materials that compose electrode. By doing so, the team took another step closer to a research to fundamentally increase cell efficiency through accurate analysis on the properties and characteristics of 3D single particles in a model. Since it can have 3D analysis of particles, the model is especially expected to be applied widely in research to design the single particles of electrode active materials in a cell.

Regarding this research, Professor Yong Min Lee in the Department of Energy Science and Engineering said “Comparing to previous works, our model can look into what happens within a single particle. As a result, it provides an innovative way in designing micrometer-sized particles. Our next goal is to apply this electrochemical model to improve the cell efficiency of electric vehicles.”

###

This research was carried out by Jihun Song (who is currently an integrated M.S.-Ph.D. candidate) and Joonam Park (a Ph.D. candidate) as the co-authors, and it was jointly conducted with Tokyo Metropolitan University (Professor Hirokazu Munakata and Professor Kiyoshi Kanamura), Chungnam National University (Professor Sung-Soo Kim), and Hanbat National University (Professor Myung-Hyun Ryou). The result was published on June 4th in the online version of Nano Energy, an international journal on energy materials.

1 Micron: A length unit defined in 10-6 m and is marked as μm

2 Electrode active material: A material involved in an electrode reaction of a cell

Media Contact
Yong Min Lee
[email protected]

Original Source

https://www.dgist.ac.kr/_prog/bbs/?mode=V&site_dvs_cd=en&menu_dvs_cd=060202&code=060104&no=4eef33e3d205b0974dc1be1676b0f83f

Related Journal Article

http://dx.doi.org/10.1016/j.nanoen.2019.05.087

Tags: Biomedical/Environmental/Chemical EngineeringElectrical Engineering/ElectronicsElectromagneticsEnergy/Fuel (non-petroleum)MaterialsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Neighboring Groups Speed Up Polymer Self-Deconstruction

Neighboring Groups Speed Up Polymer Self-Deconstruction

November 28, 2025
blank

Activating Alcohols as Sulfonium Salts for Photocatalysis

November 26, 2025

Carbonate Ions Drive Water Ordering in CO₂ Reduction

November 25, 2025

Isolable Germa-Isonitrile with N≡Ge Triple Bond

November 24, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    105 shares
    Share 42 Tweet 26
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Histone Acetyltransferase 1 Drives Postinfarction Inflammation

Unveiling Danxiong Granules for Radiation Dermatitis Treatment

Building Canada’s Integrated Health Innovation System

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.