• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers discover semiconducting nanotubes that form spontaneously

Bioengineer by Bioengineer
July 8, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: EPFL

If scientists could find a way to control the process for making semiconductor components on a nanometric scale, they could give those components unique electronic and optical properties – opening the door to a host of useful applications.

Researchers at the Laboratory of Microsystems, in EPFL’s School of Engineering, have taken an important step towards that goal with their discovery of semiconducting nanotubes that assemble automatically in solutions of metallic nanocrystals and certain ligands. The tubes have between three and six walls that are perfectly uniform and just a few atoms thick – making them the first such nanostructures of their kind.

What’s more, the nanotubes possess photoluminescent properties: they can absorb light of a specific wavelength and then send out intense light waves of a different color, much like quantum dots and quantum wells. That means they can be used as fluorescent markers in medical research, for example, or as catalysts in photoreduction reactions, as evidenced by the removal of the colors of some organic dyes, based on the results of initial experiments. The researchers’ findings have made the cover of ACS Central Science.

An accidental discovery

But the unique feature of these semiconducting nanotubes is how they are formed. “Our discovery happened almost by chance. We had set out to study the role that certain ligands play in making 2D semiconducting nanometric crystals,” says Xiaopeng Huang, the study’s lead author. But the research team found that some ligands caused molecules to spontaneously come together in precise cylindrical structures which until then had been impossible to create.

Investigating new properties

The researchers will now investigate the other physical and electrical properties of their nanotubes and look into methods for making nanotubes with just a single wall.

###

References

Xiaopeng Huang, Virendra K. Parashar and Martin A.M. Gijs, “Spontaneous Formation of CdSe Photoluminescent Nanotubes with Visible-light Photocatalytic Performance,” ACS Central Science. DOI: 10.1021/acscentsci.9b00184

Media Contact
Martin Gijs
[email protected]

Original Source

https://actu.epfl.ch/news/researchers-discover-semiconducting-nanotubes-that/

Related Journal Article

http://dx.doi.org/10.1021/acscentsci.9b00184

Tags: Atomic/Molecular/Particle PhysicsElectrical Engineering/ElectronicsElectromagneticsMaterialsNanotechnology/MicromachinesSuperconductors/SemiconductorsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Chiral Induction in Metal-Containing Dyes Achieved Through Simple Encapsulation

Chiral Induction in Metal-Containing Dyes Achieved Through Simple Encapsulation

August 7, 2025
Exploring the Limits of Nuclear Stability: Multi-Step Fragmentation of High-Energy Projectiles in Thick Targets

Exploring the Limits of Nuclear Stability: Multi-Step Fragmentation of High-Energy Projectiles in Thick Targets

August 7, 2025

Cicadas Harmonize Their Songs with the First Light of Dawn

August 6, 2025

Sure! Here are a few rewritten versions of the headline “Friction which cools” for a science magazine post: 1. “How Friction Can Cool Instead of Heat: The Science Explained” 2. “The Surprising Cooling Effect of Friction” 3. “When Friction Cools: A New Twist in Energy Science” 4. “Cooling Through Friction: Challenging Conventional Wisdom” 5. “The Unexpected Chill of Friction: Breaking the Heat Stereotype” Let me know if you’d like it tailored to a specific audience or style!

August 6, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    75 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Elranatamab Outperforms UK Real-World Myeloma Treatments

    40 shares
    Share 16 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Multifaceted Genomics Unlocks Ultra-Rare Monogenic Diagnoses

Eicosyl Heptafluorobutyrate Disrupts Pseudomonas aeruginosa Communication

Amino Acids as Postmortem Vitreous Biomarkers

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.