• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

A tale of two proteins: The best and worst of metabolic adaptation

Bioengineer by Bioengineer
July 8, 2019
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Japanese researchers reveal two enzymes responsible for inducing lean and obese states

IMAGE

Credit: Professor Mitsuyoshi Nakao

The Developmental Origins of Health and Disease (DOHaD) hypothesis is supported by multiple human epidemiological studies and animal studies. It states that the nutritional environment in early life makes people susceptible to lifestyle-related diseases, such as obesity, diabetes and heart attack, as adults. Many of those diseases exhibit reduced mitochondrial metabolism in the tissues of the body. Now, researchers from Kumamoto University in Japan reveal that two metabolic pathways involved in energy metabolism may play a role in the DOHaD hypothesis.

All cells regulate gene expression related to metabolic pathways, and adapt to environmental changes such as fluctuations in nutrition, oxygen supply, exercise, and temperature. Cells in the human body use two types of cellular metabolism, mitochondrial respiration and glycolysis. Mitochondrial respiration produces energy for the cell when oxygen is supplied (aerobic), and glycolysis is used when oxygen is scarce (anaerobic). The activity of metabolic genes changes significantly as the method of energy production shifts between these two mechanisms. Some of the most critical changes are due to histone acetylation and methylation (the addition/removal of acetyl and methyl groups) of lysine amino acids. The enzymes deacetylase SIRT1 and demethylase LSD1 are especially important in the regulation of metabolic genes because they remove the acetyl and methyl groups, respectively, of target proteins.

Two metabolic pathways, NAD+ -SIRT1 and FAD-LSD1, regulate the function of specific gene sets, and transmit nutrient signals. Recently, Kumamoto University researchers revealed that these two pathways are controlled by dietary vitamins and nutritional hormones, induce metabolic activity, and develop tissue-specific properties in fat and skeletal muscle cells. They found that FAD-LSD1 pathway represses mitochondrial metabolism and induces fat accumulation under obese condition.

DOHaD theorizes that people affected by malnutrition during early development may have a low birth weight and an increased risk of lifestyle-related diseases as adults. Although the mechanisms behind this have not been clarified, the researchers think that at least two responses work at different times. The immediate response consumes stored energy and prioritizes maintaining life, and the adaptive response “programs” the body to store energy in anticipation of future bouts of starvation. This is considered a natural survival strategy for nascent undernutrition. An adaptive response can easily adjust to undernutrition, but it makes a person more susceptible to lifestyle-related diseases, such as obesity and diabetes, under an excess of nutrition.

The NAD+-SIRT1 pathway burns energy and the FAD-LSD1 pathway stores energy, and together they can remodel metabolic tissues. In muscle development, the SIRT and LSD1 pathways selectively promote slow and fast twitch fiber formation respectively, which increases susceptibility to lifestyle-related diseases. Thus, the researchers believe that these enzymes are involved in DOHaD mechanisms. Specifically, that SIRT1 can play a role in the immediate response and that LSD1 can be involved in the adaptive response.

Speaking about future activities, research leader Professor Mitsuyoshi Nakao said, “We hope our work will help lead to new disease control and prevention strategies by improving the understanding of lifestyle-related diseases, and the nutrition of young parents and babies during perinatal periods.”

###

This work was posted online in “Trends in Endocrinology and Metabolism” on 5 May 2019.

Source

Nakao, M. et al., 2019. Distinct Roles of the NAD+-Sirt1 and FAD-LSD1 Pathways in Metabolic Response and Tissue Development. Trends in Endocrinology & Metabolism. Available at: http://dx.doi.org/10.1016/j.tem.2019.04.010.

Media Contact
J. Sanderson
[email protected]

Original Source

https://www.kumamoto-u.ac.jp/whatsnew/sizen/20190530

Related Journal Article

http://dx.doi.org/10.1016/j.tem.2019.04.010

Tags: Developmental/Reproductive BiologyDiet/Body WeightMedicine/HealthMetabolism/Metabolic DiseasesNutrition/NutrientsParenting/Child Care/FamilyPhysiology
Share12Tweet7Share2ShareShareShare1

Related Posts

Astrocyte Fate in Mouse Septum Driven by Origins, Signals

Astrocyte Fate in Mouse Septum Driven by Origins, Signals

August 3, 2025
blank

AI Predicts Sinus Surgery Outcomes from Images

August 3, 2025

Fat Cell N-Acetylaspartate Controls Post-Meal Body Temperature

August 3, 2025

Boosting Stem Cell Growth with Testis Scaffolds

August 3, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    47 shares
    Share 19 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

30-Hydroxygambogic Acid Boosts Cisplatin Against HPV+ Cancer

Bright Excitons Enable Optical Spin State Control

High-Brightness Quantum Cascade Lasers Operate Efficiently Continuously

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.