• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Novel Chinese nanogenerator takes cue from electric eels

Bioengineer by Bioengineer
June 24, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: TAN Puchuan

Researchers from the Beijing Institute of Nanoenergy and Nanosystems and the University of Chinese Academy of Sciences have developed a bionic stretchable nanogenerator (BSNG) that takes inspiration from electric eels.

The scientists hope the new technology will meet the tough demands of wearable equipment applications for stretchability, deformability, biocompatibility, waterproofness and more.

BSNG, which uses technology that mimics the structure of ion channels on the cytomembrane of electric eels’ electrocytes, has two broad applications: Besides providing a potential power source for wearable electronic devices underwater and on land, it can also be used for human motion monitoring due to its excellent flexibility and mechanical responsiveness.

The study was published online in Nature Communications on June 19.

BSNG is based on a mechanically sensitive bionic channel that relies on the stress mismatch between polydimethylsiloxane and silicone. Like its eel counterpart, BSNG can generate an open circuit voltage up to 10 V underwater. It can also generate an open circuit voltage up to 170 V under dry conditions.

BSNG’s bionic structure and material ensure superior stretchability. For example, BSNG maintained stable output performance without attenuation after 50,000 uniaxial tensile tests (tensile rate of 50%).

To prove the practicability of the technology, the researchers built an underwater wireless motion monitoring system based on BSNG.

Through this system, the motion signals under different swimming strokes can be synchronously transmitted, displayed and recorded. As for the energy harvester application, researchers achieved underwater rescue based on BSNG.

Wearable integrated BSNGS can collect mechanical energy from human motion and convert it into electrical energy to store in capacitors. In case of emergency, the rescue signal light can be lighted remotely by tapping the alarm trigger in front of the chest.

Due to its excellent properties, BSNG holds great promise for use in electronic skin, soft robots, wearable electronic products and implantable medical devices.

###

Media Contact
TAN Puchuan
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-019-10433-4

Tags: Chemistry/Physics/Materials SciencesMaterials
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.