• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Mystery of immunosuppressive drug’s biosynthesis finally unlocked

Bioengineer by Bioengineer
June 21, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ZHANG Wei and LI Shengying

Mycophenolic acid (MPA), discovered in 1893, was the first natural antibiotic to be isolated and crystallized in human history. Today, this fungal metabolite has been developed into multiple first-line immunosuppressive drugs to control immunologic rejection during organ transplantation and treat various autoimmune diseases.

However, the biogenesis of such an old and important molecule was an unsolved mystery for more than a century.

Recently, scientists from the Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT) of the Chinese Academy of Sciences cracked this intriguing black box by fully elucidating the biosynthetic pathway of MPA. The results were published in Proceedings of the National Academy of Sciences of the United States of America (PNAS).

The researchers revealed that MPA biogenesis requires very unique cooperation between biosynthetic enzymes and β-oxidation catabolic machinery.

Interestingly, the involved enzymes were observed to be compartmentalized in different organelles including cytoplasm, the endoplasmic reticulum, the Golgi apparatus, and peroxisomes.

In this pathway, the oxygenase MpaB’, which is intriguingly homologous to a latex-clearing enzyme, was identified as the long-sought key enzyme responsible for oxidative cleavage of the farnesyl side chain that is structurally similar to rubber.

The resultant carboxylic acid intermediate allows it to be recognized by the fungal β-oxidation machinery located in the peroxisomes. The following successive β-oxidation chain-shortening process is elegantly gated by the peroxisomal acyl-CoA hydrolase MpaH’, thus leading to efficient and specific production of MPA.

The scientists concluded that compartmentalized biosynthesis is likely a very important characteristic of natural product biosynthesis in higher organisms such as fungi and plants.

They hope their work will prompt more research on this phenomenon since there is only very limited knowledge about the subcellular localization of fungal biosynthetic enzymes and their involvement in product formation and intermediate trafficking.

The researchers also hope the insights gained from this study will encourage industrial strain improvements that would lower the cost of this popular immunosuppressive drug as well as novel drug development based on MPA structural derivatization. “Ultimately, we wish that millions of patients will benefit from this basic research,” said LI Shengying, corresponding author of the study.

###

Media Contact
CHENG Jing
[email protected]

Original Source

http://english.cas.cn/

Related Journal Article

http://dx.doi.org/10.1073/pnas.1821932116

Tags: BiologyBiotechnologyCell BiologyImmunology/Allergies/AsthmaPharmaceutical ScienceTransplantation
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

AI Uncovers ‘Self-Optimizing’ Mechanism in Magnesium-Based Thermoelectric Materials

August 22, 2025
Astronomers Discover the Brightest Fast Radio Burst Ever Recorded

Astronomers Discover the Brightest Fast Radio Burst Ever Recorded

August 21, 2025

Atomically Thin Material Wrinkles Pave the Way for Ultra-Efficient Electronics

August 21, 2025

Exploring Dark Matter Through Exoplanet Research

August 21, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Global Study Finds Heart Disease Disproportionately Affects Racialized and Indigenous Communities, Exacerbated by Data Gaps

New Study Reveals How Lymphoma Reconfigures the Human Genome

Revolutionizing Prosthetic Legs: Innovations Through Data-Driven Design

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.