• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Colloidal gel properties under the microscope

Bioengineer by Bioengineer
May 31, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Tokyo, Japan – The term colloidal gel might not be one that is immediately familiar to everybody. However, most people come into contact with these materials every day. Many cosmetics, pharmaceuticals, food products and even building materials are made up of colloidal gels, and as a result these materials are widely studied. However, to date, research methods have not been capable of following the complete gelation process. Now, researchers at The University of Tokyo have used confocal microscopy to analyze the process in real time with single particle resolution. Their findings are published in Science Advances.

Colloidal gels consist of two phases that are intertwined with one another: a solid particle network and a liquid solvent. The result is soft-solid materials with unique properties, including elasticity and mechanical stability, which make them attractive choices for numerous applications. Although these properties have been capitalized upon commercially, they are not completely explained by the theoretical understanding that has been acquired to date.

“Studying colloidal gels that are already formed means that the actual process of gelation remains somewhat of a black box,” one of study leading authors Hideyo Tsurusawa explains. Another leading author Mathieu Leocmach continues “By establishing a method that allows us to follow the kinetics of the complete gelation process, we have gained new insight into the origins of the characteristic properties of colloidal gels. Understanding the individual stages of gelation has enabled us to demonstrate a direct link between the mechanical stability of gels and isostatic structures.”

Isostatic structures are particles or clusters that experience balanced forces. The researchers found that the point in the gelation process when solidity appears corresponds to the point of isotropic percolation of isostatic structures through the gel. Their comparison of the differences in percolation behavior between low and high concentration gels suggested that the space-spanning percolation of isostatic structures are directly linked to mechanical stability.

“The real time nature and resolution of our technique have resulted in a depth of understanding that was not previously achievable,” study corresponding author Hajime Tanaka explains. “We hope that the enhanced insight will be useful for researchers working to address complex mechanical and rheological issues across the wide span of colloidal gel applications.”

###

The article, “Direct link between mechanical stability in gels and percolation of isostatic particles” was published in Science Advances at DOI: 10.1126/sciadv.aav6090.

About Institute of Industrial Science (IIS), the University of Tokyo

Institute of Industrial Science (IIS), the University of Tokyo is one of the largest university-attached research institutes in Japan.

More than 120 research laboratories, each headed by a faculty member, comprise IIS, with more than 1,000 members including approximately 300 staff and 700 students actively engaged in education and research. Our activities cover almost all the areas of engineering disciplines. Since its foundation in 1949, IIS has worked to bridge the huge gaps that exist between academic disciplines and real-world applications.

Media Contact
Hajime Tanaka
[email protected]

Related Journal Article

https://www.iis.u-tokyo.ac.jp/en/news/3111/
http://dx.doi.org/10.1126/sciadv.aav6090

Tags: Algorithms/ModelsChemistry/Physics/Materials SciencesFood/Food ScienceIndustrial Engineering/ChemistryMaterialsMolecular PhysicsResearch/Development
Share12Tweet8Share2ShareShareShare2

Related Posts

High-Frequency Molecular Vibrations Trigger Electron Movement

High-Frequency Molecular Vibrations Trigger Electron Movement

August 20, 2025
blank

Scientists Amazed by Enormous Bubble Surrounding Supergiant Star

August 20, 2025

Non-Equilibrium Effects Driven by Rarefaction in Shock Wave and Boundary Layer Interactions

August 19, 2025

Serve with a Spectacular Swerve: The Science Behind Spin and Precision

August 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Breast Tumors Invade Fat Cells to Fuel Growth: Can We Halt Their Progress?

High-Frequency Molecular Vibrations Trigger Electron Movement

Advancements in Graphene Technology Accelerate Maturation of Brain Organoids, Paving the Way for Insights into Neurodegenerative Diseases

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.