• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Research reveals surprisingly powerful bite of tiny early tetrapod

Bioengineer by Bioengineer
May 9, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Image courtesy of Professor Jennifer Clack, University Museum of Zoology, Cambridge

Micro-CT scanning of a tiny snake-like fossil discovered in Scotland has shed new light on the elusive creature, thought to be one of the earliest known tetrapods to develop teeth that allowed it to crush its prey.

Detailed scans of Acherontiscus caledoniae showed a unique combination of different tooth shapes and sizes as well as a deep lower jaw which scientists believe would have given the creature the ability to pierce, cut and grind the hard-shelled crustaceans that made up its diet.

Scientists led by the University Museum of Zoology in Cambridge alongside the University of Lincoln, the Natural History Museum in London and the University of Southampton, found that the dental pattern of Acherontiscus is at odds with that of several other tetrapods of this period, which tended to have uniform rows of cone-like teeth sometimes curved backwards at the tip. The variation in the shape and size of teeth shown in this fossil displays a level of dental adaptation that is unprecedented in such an early tetrapod.

As co-author Dr Marcello Ruta from the University of Lincoln’s School Of Life Sciences explains: “We found that Acherontiscus preceded the origin of modern tetrapod lineages and joined an array of primitive groups that independently acquired long and often miniaturized bodies, and exhibited either reduced or no limbs.”

The fossil is the only known specimen of this limbless tetrapod, which measured just 6 inches long and existed in swampy marshlands on the outskirts of Edinburgh some 330 million years ago. The delicate nature of the fossil meant that scientists were unable to use mechanical or chemical methods to free its skeleton from the surrounding rock, or study the specimen under a microscope.

Lead author Professor Jennifer Clack from the University Museum of Zoology in Cambridge said: “Using advanced techniques of micro-CT scanning, we were able to make sense of Acherontiscus‘ complex skull, revealing minute anatomical details that allowed us to produce a greatly revised and much more complete reconstruction.

“We were particularly surprised to realize the great variety of shapes and sizes of its teeth. Acherontiscus is the earliest known tetrapod showing a crushing dentition, a feature with a rather discontinuous distribution in fossil and modern tetrapods.”

Fragments in the surrounding matrix have also revealed more about Acherontiscus‘ habitat which will inform further research into the area as co-author Professor John Marshall from the University of Southampton’s School of Ocean and Earth Science explains: “Our study provided impetus for exploring the ecology and environments of the Scottish wetlands where Acherontiscus lived. Analysis of the content of fossil spores from about 0.2 grams of the matrix surrounding the creature suggests that this animal lived close to or within a still water body surrounded by herbaceous plants related to clubmosses. A more distant forest of larger, tree-like relatives of modern quillworts was also present.”

###

The paper Acherontiscus caledoniae: the first heterodont and durophagous tetrapod was published in the Royal Society Open Science journal. The full paper is available at: https://royalsocietypublishing.org/doi/10.1098/rsos.182087

Media Contact
Sophie Belcher
[email protected]

Related Journal Article

http://dx.doi.org/10.1098/rsos.182087

Tags: ArchaeologyBiologyEvolutionMarine/Freshwater BiologyPaleontologyZoology/Veterinary Science
Share13Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.