• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New synthesis strategy speeds identification of simpler versions of a natural product

Bioengineer by Bioengineer
April 24, 2019
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Research may have implications for Alzheimer’s Disease or preventing the immune system from rejecting organ transplants, Baylor-led study finds

IMAGE

Credit: Photo by Roxane M. Jourdain

A new chemical synthesis strategy to harvest the rich information found in natural products — organic compounds isolated from natural sources — has led to the identification of novel, simpler derivatives with potential to selectively protect neurons, important for neurodegenerative diseases like Alzheimer’s disease, or to prevent the immune system from rejecting organ transplants, according to a Baylor University-led study.

The study is published in the journal Nature Chemistry.

Researchers caution that their research has led only to potential drug leads rather than drug discovery, and that possible applications likely would be many years away and would require extensive development by pharmaceutical companies. But the research is significant because the strategy to reach these drug leads has the potential to profoundly reduce the time it takes to go from an initial complex natural product to simplified versions ripe for further development.

The pilot study for this new approach began with gracilin A, a natural product derived from a sea sponge, which other researchers had found to have medicinal potential but lacked detailed structure and bioactivity relationships, said lead author Daniel Romo, Ph.D., The Schotts Professor of Chemistry in Baylor’s College of Arts & Sciences.

The streamlined synthetic method — called “pharmacophore-directed retrosynthesis” (PDR) — is “like the difference between constructing an eight-story building when all you need may be a six- or seven-floor building,” Romo said. A pharmacophore is the minimal structure required for activity of a bioactive molecule.

Romo likens his synthesis group to molecular engineers building molecules rather than buildings.

“We thought, ‘Why not come up with a hypothesis regarding what might be essential for bioactivity, integrate that minimal structure into our first-floor plans, and then gradually build up the rest of the natural product, floor by floor, while performing biological studies at every floor on the way up to the top floor?'” Romo said.

The long-term goal is quicker identification of simpler versions of the natural product that retain the bioactivity of interest. This can be done en route to synthesizing the more complex natural product target “by stopping and looking at what is on the fifth, sixth and seventh floors on your way up to the top floor,” Romo said.

This could greatly reduce the time to identify useful compounds derived from natural products, which also could ultimately impact the cost of drugs.

Chemists from Baylor University, the Universidad de Santiago de Compostela in Lugo, Spain, and the University of Aberdeen in Aberdeen, Scotland, used PDR to identify several derivatives of gracilin A that, unlike the natural product itself, were found to selectively bind one of two closely related proteins, cyclophilin A (CypA) and cyclophilin D (CypD).

CypA is involved with the immune response, and inhibition of this protein target leads to immunosuppression, an activity critical for preventing organ transplant rejection. CypD is involved in aberrant cellular processes that are implicated in neurodegenerative diseases, such as Alzheimer’s and atherosclerosis.

Romo said he hopes that pharmaceutical companies will find the PDR strategy appealing and look once again to natural products as leads for drug discovery in addition to more traditional approaches currently practiced.

“PDR could mitigate some of the concerns with the complexity of natural products, which contributed to the decline of natural products as starting points for drug discovery in the first place,” Romo said.

###

This research was supported by a grant (MERIT Award R37 GM052964) from the Institute of General Medical Sciences of the National Institutes of Health.

Media Contact
Terry Goodrich
[email protected]

Original Source

https://www.baylor.edu/mediacommunications/news.php?action=story&story=209099

Related Journal Article

http://dx.doi.org/10.1038/s41557-019-0230-0

Tags: AlzheimerBiochemistryChemistry/Physics/Materials SciencesMedicine/HealthneurobiologyNeurochemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Measuring Stabbing Force in Intracranial Homicides

October 21, 2025

Nursing Students’ Clinical Learning Challenges at Wolaita Sodo

October 21, 2025

Comparing Routes: Subcutaneous vs. Intravenous Pembrolizumab

October 21, 2025

Forensic Advances: Linking STRs, SNPs, and Methylation

October 21, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1268 shares
    Share 506 Tweet 317
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    302 shares
    Share 121 Tweet 76
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    129 shares
    Share 52 Tweet 32
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    123 shares
    Share 49 Tweet 31

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Measuring Stabbing Force in Intracranial Homicides

Nursing Students’ Clinical Learning Challenges at Wolaita Sodo

Comparing Routes: Subcutaneous vs. Intravenous Pembrolizumab

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.