• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Plasma protein may hold promise for wound scaffolds

Bioengineer by Bioengineer
March 4, 2019
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers in Germany have employed a plasma protein found in blood to develop a new method for making wound-healing tissue scaffolds.

The team’s new scaffold can be attached or detached from a surface, for either in vitro laboratory tissue studies or direct applications in the body.

Their discovery, reported today in the journal Biofabrication, could be extremely useful for future use in wound healing and tissue engineering.

Lead author Professor Dorothea Brüggemann, from the University of Bremen, said: “The protein we used is called fibrinogen. It is an extracellular glycoprotein found in blood plasma and plays a major role in wound healing by assembling into a fibrous network to form a provisional extracellular matrix (ECM) that helps with wound closure.”

Because of its versatile molecular interactions, fibrinogen is often processed into hydrogels and fibrous scaffolds for cell culture and tissue engineering applications in vitro. However, existing ways of doing this – such as electrospinning or the preparation of fibrin hydrogels – use organic solvents, high electric fields or enzymatic activity, which change the molecular structures or native protein functions of fibrinogen.

To solve this, the team wanted to find out if they could develop a simple and well-controllable way to make three-dimensional scaffolds while retaining fibrinogen’s properties.

Professor Brüggemann said: “For the first time, we were able to assemble fibrinogen into dense, three-dimensional scaffolds without using high voltages, organic solvents or enzymatic activity. Our biofabrication process can be controlled simply by adjusting the fibrinogen and salt concentration, and the pH range.”

The dimensions of the scaffolds reached diameters in the centimetre range and a thickness of several micrometres. With 100 to 300 nm, the diameters of self-assembled fibres were in the range of native

ECM fibres and fibrin fibres in blood clots.
Professor Brüggemann added: “This novel class of fibrinogen nanofibres holds great potential for various biomedical applications. For example, in future studies on blood coagulation our immobilised fibrinogen nanofibres could provide a valuable in vitro platform for initial drug screening. On novel wound healing applications, it will be highly interesting to study the interaction of fibroblasts and keratinocytes with our free-standing fibrinogen scaffolds.”

###

Media Contact
Simon Davies
[email protected]
http://dx.doi.org/10.1088/1758-5090/ab0681

Tags: BiochemistryBiologyBiomechanics/BiophysicsBiotechnologyCell BiologyChemistry/Physics/Materials SciencesMedicine/HealthRehabilitation/Prosthetics/Plastic Surgery
Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.