• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Scientists identify genetic mechanism involved in how females inherit traits

Bioengineer by Bioengineer
February 20, 2019
in Science
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Research could help reduce females’ susceptibility to several diseases, such as Fragile X and Rett syndromes

IMAGE

Credit: Zheng lab, UC Riverside.


As many know, females have two X chromosome while males have one X and one Y chromosome.

Perhaps less known is that female cells randomly and permanently shut off one of the X chromosomes during embryonic development through a process called X chromosome inactivation, or XCI.  Just how XCI occurs has remained unclear — until now.

New research performed on mouse female embryonic stem cells by scientists at the University of California, Riverside, traces the origin of XCI to an RNA splicing mechanism.

Occurring in every human cell and almost all human genes, RNA splicing copies and pastes genetic fragments scattered among the genome to create a meaningful or functional genetic message.

In the case of XCI, the researchers found that a special splicing event occurs prior to XCI and in association with the X chromosome chosen for inactivation, but not with the other X chromosome. This special splicing event happens in “Xist,” a gene expressed only in females and the inactive X chromosome.

Scientists have accepted Xist induction at the onset of XCI as the molecular trigger for initiating XCI, but how Xist is induced is not entirely clear. Also unknown is how Xist remains repressed prior to XCI. The new study shows that Xist is largely unspliced, thus unfunctional, before XCI. Upon differentiation of embryonic stem cells, Xist becomes spliced, and thus functional to kick-start subsequent events to induce XCI.

Study results appear in the journal Nucleic Acids Research.

“XCI ensures that females express similar dosages of X chromosome gene products as males do,” said Sika Zheng, an assistant professor of biomedical sciences in the UCR School of Medicine, who led the research. “This inactivation ensures, too, that, like males, females have a balanced expression between the X chromosome and autosomes — chromosomes that are not sex chromosomes.”

Zheng explained that XCI happens in every female, and its regulation influences whether a daughter inherits a trait from her father or her mother. It also determines females’ susceptibility to various diseases, such as Fragile X syndrome and Rett syndrome.

“The splicing mechanism is fundamental to understanding trait inheritance in females,” he said. “If we could manipulate which X chromosome to inactivate through splicing, we might be able to alter females’ expression of their genetic traits and their susceptibility to diseases without altering their genomes. Regulating Xist transcription has been at the center of this research field for a long time. Our discovery should draw scientists’ attention to splicing.”

###

The research was funded by the National Institutes of Health. Zheng was joined in the study by Cheryl Stork, first author of the research paper, as well as Zhelin Li and Lin Lin.

Media Contact
Iqbal Pittalwala
[email protected]
951-827-6050

Tags: BiologyBiotechnologyDevelopmental/Reproductive BiologyGenesGeneticsMedicine/HealthneurobiologyPublic HealthSex-Linked Conditions
Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AFAR Secures Over $5.7 Million NIH Renewal Funding for Nathan Shock Centers Coordinating Center

Immunotherapy Prolongs Survival in Patients with Rare Skin Cancer

Multifocus Microscope Breaks New Ground in Rapid 3D Live Biological Imaging

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.