• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Immunology

LSTM receives grant to accelerate evaluation of next-generation malaria control tools

Bioengineer by Bioengineer
February 7, 2019
in Immunology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The project is led by Professors Ranson and McCall at LSTM, in collaboration with Imperial College, and national medical research institutes in Burkina Faso (Centre National de Recherche et de Formation sur le Paludisme, CNRFP) and Tanzania (National Institute for Medical Research, NIMR). The aim is to develop a robust set of entomological indicators that can be used to assess the public health value of new vector control tools, reducing the need for lengthy and expensive randomized controlled trials.

Professor McCall explains that better knowledge of how mosquitoes interact with bednets underpinned this new award: “We now have a much better understanding of how mosquitoes respond to insecticide treated bednets, and how this in turn impacts their ability to transmit malaria parasites. This has enabled us to develop a series of simple bench top assays that we can use to measure the performance of new bednets against different mosquito populations. By working with mathematical modelers, we can convert these entomological outcomes into predictions of the impact of new tools on malaria transmission.”

After more than a decade of success in reducing malaria across Africa, primarily through methods targeting the mosquito vector, progress has stalled. Bed nets treated with different insecticides are needed to overcome resistance to the single class of insecticides, pyrethroids, that have been used for over 20 years in bed nets. While these so-called ‘Next Generation’ bednets are becoming available, they are more expensive than the original nets, raising numerous questions about their effectiveness and where and when they should be used, and delaying their deployment in communities that need them.

The ESSENTIALS (Essential Entomological Indicators for Assessment of LLINs) project will be conducted in the same sites as key clinical trials, or large-scale pilot deployments of Next Generation bednets, now getting underway across Africa, enabling results from our modelling predictions to be compared with epidemiological data from those trials or programmes.

Professor Ranson explains that this provides an ideal opportunity to address the critical questions of whether entomological endpoints can predict the clinical efficacy of new malaria control tools: ‘This is a very hot topic today; countries experiencing a rebound in malaria are eager to adopt new tools but of course they also want to be certain that these will be effective in the particular transmission settings in their country. We are hopeful that the outcome of this project will be a robust, but much quicker, approach to assessing when and where to use which malaria control tool to have the maximum impact in reducing transmission”.

###

Media Contact
Clare Bebb
[email protected]
44-151-705-3135
https://www.lstmed.ac.uk/news-events/news/lstm-receives-grant-to-accelerate-evaluation-of-next-generation-malaria-control

Tags: BiochemistryEntomologyInfectious/Emerging DiseasesMedicine/HealthZoology/Veterinary Science
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

UMass Amherst grad student awarded fellowship for food allergy research

July 23, 2021
IMAGE

Less-sensitive COVID-19 tests may still achieve optimal results if enough people tested

July 22, 2021

Public trust in CDC, FDA, and Fauci holds steady, survey shows

July 20, 2021

USC study shows male-female differences in immune cell function

July 19, 2021
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    121 shares
    Share 48 Tweet 30
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    76 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    52 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mapping Urban Slums Reveals Inequality in Africa

Newborn Idiopathic Scrotal Hematoma: Case Study Insights

Gordian Biotechnology Named Tier 5 Sponsor for ARDD 2025

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.