• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, July 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Scientists identify gene contributing to prostate cancer drug resistance

Bioengineer by Bioengineer
January 15, 2019
in Cancer
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The GREB1 gene promotes resistance to prostate cancer treatments, making it a potential target for future therapies

Researchers have discovered how a gene involved in regulating hormone receptors may contribute to drug resistance in some prostate cancer patients.

Their findings, published in eLife, suggest that disrupting specific activity of the GREB1 gene could be explored for developing more effective therapies in future.

Androgens, a male hormone, encourage the growth of prostate cancer cells. Hormone therapies (or ‘antiandrogens’) have been developed to counter this activity. These treatments, which target a protein molecule activated by the hormone – the androgen receptor (AR) – are effective against advanced prostate cancer but are hindered by a type of drug resistance called castration-resistant prostate cancer (CRPC). The most common cause of this resistance is an increase in both the amount and activity of AR.

Previous studies have shown that increases or mutations in AR are present in over 50% of CRPC patients, and that increases in AR are associated with greater resistance to the next-generation AR inhibitors: abiraterone and enzalutamide.

“Studies have also revealed several differences in AR activity in prostate cancer,” explains first author Eugine Lee, Research Fellow in Charles Sawyers’ lab at Memorial Sloan Kettering Cancer Center, US. “Notably, these differences occur in the absence of genetic alterations in AR, which are generally found only in CRPC. A possible explanation is that AR activity is encouraged by coactivators – other genes and proteins that help the function of AR – and we wanted to see if this is the case.”

Lee and her team first isolated prostate cancer cells with low versus high AR activity. They found that those with high AR output have reduced sensitivity to enzalutamide, in the absence of changes in AR protein expression.

They next identified three genes that were most active in cells with high AR output: GREB1, KLF8 and GHRHR. “Of these genes, we prioritised GREB1 for further investigation because it has higher expression levels in primary prostate tumours with high AR activity,” says Lee.

Their analysis showed that GREB1 increases AR activity through a novel two-part mechanism: it binds AR and promotes its activity by recruiting AR coactivators (enzymes such as EP300/CBP); and it improves the efficiency of AR binding to DNA, which further enhances AR activity. Importantly, the team found that inhibiting GREB1 converted cells with a high AR output to a low-output state, and improved the effectiveness of enzalutamide treatment.

“Collectively, our results implicate GREB1 as an amplifier of AR activity that contributes to prostate cancer progression and promotes antiandrogen resistance in disease models,” concludes senior author and Howard Hughes Medical Institute Investigator Charles Sawyers, Chair of the Human Oncology and Pathogenesis Program at Memorial Sloan Kettering Cancer Center.

“For now, further research is needed to understand the clinical implications of this work – particularly whether GREB1 levels in CRPC patients can be used to predict their response to next-generation AR therapy.”

###

Reference

The paper ‘GREB1 amplifies androgen receptor output in human prostate cancer and contributes to antiandrogen resistance’ can be freely accessed online at https://doi.org/10.7554/eLife.41913. Contents, including text, figures and data, are free to reuse under a CC BY 4.0 license.

This study was first published on bioRxiv, at https://www.biorxiv.org/content/early/2018/10/02/433755.

Media contact

Emily Packer, Senior Press Officer

eLife

[email protected]

01223 855373

About eLife

eLife aims to help scientists accelerate discovery by operating a platform for research communication that encourages and recognises the most responsible behaviours in science. We publish important research in all areas of the life and biomedical sciences, including Cancer Biology, which is selected and evaluated by working scientists and made freely available online without delay. eLife also invests in innovation through open-source tool development to accelerate research communication and discovery. Our work is guided by the communities we serve. eLife is supported by the Howard Hughes Medical Institute, the Max Planck Society, the Wellcome Trust and the Knut and Alice Wallenberg Foundation. Learn more at https://elifesciences.org/about.

To read the latest Cancer Biology research published in eLife, visit https://elifesciences.org/subjects/cancer-biology.

Media Contact
Emily Packer
[email protected]

Related Journal Article

https://elifesciences.org/for-the-press/2600db7f/scientists-identify-gene-contributing-to-prostate-cancer-drug-resistance
http://dx.doi.org/10.7554/eLife.41913

Tags: BiologycancerGenesMedicine/HealthProstate Cancer
Share12Tweet8Share2ShareShareShare2

Related Posts

EMT and Cancer: Essential Insights for Clinicians

EMT and Cancer: Essential Insights for Clinicians

July 26, 2025
Vepdegestrant Outperforms Fulvestrant in Mutant ER+ Breast Cancer

Vepdegestrant Outperforms Fulvestrant in Mutant ER+ Breast Cancer

July 26, 2025

Expanding MET’s Therapeutic Role in NSCLC and Beyond

July 26, 2025

Microbiota’s Role in Radiotherapy-Driven Cancer Immunity

July 26, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    51 shares
    Share 20 Tweet 13
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • New Measurements Elevate Hubble Tension to a Critical Crisis

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advanced Pressure-Velocity Patch Enhances Flight Detection

Durable, Flexible Electrochemical Transistors via Electropolymerized PEDOT

Challenges and Opportunities in High-Filled Polymer Manufacturing

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.