• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Stick insect study shows the significance of passive muscle force for fast movements

Bioengineer by Bioengineer
January 9, 2019
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Arndt von Twickel et al.


Long, heavy limbs such as arms or legs differ fundamentally from short, light limbs such as fingers in their ability to execute fast movements. While the central nervous system has to actively control fast movements of large limbs, passive muscle force can suffice for the movement velocity and movement amplitude of small and light limbs. That is the result of a study conducted on the stick insect by the zoologists Ansgar Bueschges, Arndt von Twickel and Christoph Guschlbauer at the University of Cologne in cooperation with the visiting scientist Scott Hooper from Ohio University. The paper has now been published under the title ‘Swing Velocity Profiles of Small Limbs Can Arise from Transient Passive Torques of the Antagonist Muscle Alone’ in Current Biology.

There are different basic speed levels in the course of a movement until the entire motor action has been optimally executed, says Bueschges: ‘If we look at the swinging of our legs when we walk, for example, the swinging phase brings the leg back into the starting position for the next step. With this feedback, the swing speed of the leg decreases towards the end, so that the foot does not touch down as quickly. Without the deceleration, the force generated when touching down would be so strong that it would counteract the next step.’ Our nervous system produces this deceleration in large limbs such as the human leg.

For smaller limbs such as insect bones, however, the authors have shown that the slowing of the leg during rapid movements such as the swinging phase is independent of the central nervous system. Von Twickel explains that this is due to the intrinsic muscle characteristics of the limb: ‘If the extensor muscle of a leg joint is actively shortened to produce rapid movements, the inactive flexor muscle is necessarily lengthened. During this stretching, the flexor muscle develops a previously unknown dynamic passive force, which is so large that it can continuously slow down movements to the functionally necessary level.’

In the study, the authors exposed the flexor muscle of the stick insect leg to various stretching scenarios and measured the dynamic forces exerted by the passive muscle against the different stretches. Then, they used the results to dynamically simulate the functioning of a leg joint. The passive dynamic forces of the flexor generated by extensor activation were able to generate a movement that corresponded to the speed profile of an animal.

These results are quite surprising and contradict widespread notions of how small limbs execute fast movements. Bueschges concludes: ‘We have known for a long time that passive muscle forces are important for the movements of small limbs, but we did not expect that their effect is so great that they can determine the speed profile of a movement. This means that the active muscle and its opponent must be perfectly tuned to each other. We are in the process of better understanding this interaction.’

###

Media Contact
Ansgar Bueschges
[email protected]
49-221-470-2607

Related Journal Article

http://dx.doi.org/10.1016/j.cub.2018.11.016

Tags: BiologyPhysiologyZoology/Veterinary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Southern Africa’s Crop Yields Remain Stagnant Despite Climate Trends

October 15, 2025

Human Organ Chip Technology Paves the Way for Pan-Influenza A CRISPR RNA Therapies

October 15, 2025

Scientists Identify X-Chromosome Gene Increasing Women’s Risk for MS and Alzheimer’s

October 15, 2025

Vegan Diet Reduces Insulin Expenses by 27% in Individuals with Type 1 Diabetes, Study Finds

October 15, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1247 shares
    Share 498 Tweet 311
  • New Study Reveals the Science Behind Exercise and Weight Loss

    105 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    92 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mount Sinai Studies Reveal Key Molecular Differences Between Living and Postmortem Brain Tissue

Southern Africa’s Crop Yields Remain Stagnant Despite Climate Trends

Conformity-Aware Model Revolutionizes Self-Supervised Group Recommendations

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.