• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, July 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

3D simulation of bone densitometry predict better the risk of fracture due to osteoporosis

Bioengineer by Bioengineer
March 5, 2019
in Health
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

According to a study published recently in the advanced edition of the journal Bone whose authors are members of the BCN MedTech research group; the company Galgo Medical, a UPF spin-off, the QUAES-UPF Chair, and the CETIR radiological center

IMAGE

Credit: UPF

Osteoporosis is a skeletal disease in which there is a decrease in bone mass density. The bones become more porous and fragile making them more susceptible to fracture. This disease reduces bone density and weakens the bone. The weakening of the bone increases the risk of fracture. Among all possible osteoporotic fractures, hip fractures are a major problem in Western countries. In fact, it is estimated that they affect one-third of women and a fifth of men. Hip fracture reduces mobility, quality of life and may even increase mortality in women and men. As such, the prediction of osteoporotic hip fractures is very important in terms of quality of life and life expectancy.

The main goal of a recent study published in the journal Bone was to find biomechanical criteria for the discrimination of the risk of hip fractures by exploring DXA-based 3D models and specific finite element simulations for patients in vivo. Carlos Ruiz Wills, first author of the study, and Jérôme Noailly, study coordinator, both members of the Biomechanics and Mechanobiology laboratory at the BCN MedTech Research Unit explain:

“This research has demonstrated that the modelling and biomechanical simulation of the bone by means of finite element-based 3D reconstructions of conventional bone densitometry provide descriptors of the internal tissue mechanics that go beyond the traditionally explored bone density when it comes to discriminating the risk of osteoporotic fracture of the proximal femur (hip fracture)”.

The finite elements method is a numerical calculation method widely used in simulations of complex physical and biological systems that enables solving differential equations associated with physical problems on complicated geometries.

This study combines the competencies of the Biomechanics and Mechanobiology laboratory in computational biomechanics and the competencies of the SiMBIOSys group at BCN MedTech, directed by Miguel A. Gonzalez Ballester (ICREA), in biomedical image analysis. Such synergy illustrates new trends in exploiting the potential of models and simulations to improve patient diagnosis, explain Jérôme Noailly and Miguel A. González Ballester: “On the one hand, advanced image analysis provides a customized framework of modelling and augmented reality, by integrating the morphology and the densities of the patients’ bones into virtual models. Moreover, the conversion of these models into finite element models capable of integrating equations of the bone’s mechanical behaviour in the event of external mechanical events, such as a fall, enables calculating descriptors that uniquely integrate crossed effects between bone quality, particular bone morphology and external mechanical forces that often depend on the weight and height of the patient”.

“The 3D models obtained in this study come from the reconstruction of flat 2D image densitometry (DXA, dual energy X-ray absorptiometry) using the 3D Shaper software developed by Galgo Medical, a UPF spin-off technology company”, comments Luis Miguel del Rio, a radiologist at the CETIR radiology centre (Ascires Group) and a contributor to the study. The potential of this biomedical technology comes from the fact that the simulations obtained by this research include three-dimensional interaction between bone density, the geometry of the femur and external mechanical loads, which cannot be measured in a patient.

The results obtained in this study show a power of discrimination usually greater than 80% compared to the calculation of hip fracture risk following a fall by the patient. In addition, in discriminating the risk of fracture, the simulations have allowed the authors to grant relative importance to the stress state of the trabecular bone, compared to the stress state of the cortical bone.

###

The study, published recently in the advanced edition of the journal Bone is the result of active collaboration by Carlos Ruiz Wills, first author; Andy Luis Olivares, Simone Tassani, Mario Ceresa, Veronika Zimmers, Miguel A. Gonzalez Ballester (ICREA), and Jérôme Noailly, study coordinator, all members of the BCN MedTech Research Unit of the Department of Information and Communication Technologies (DTIC) at UPF, the company Galgo Medical (UPF spin-off), and the CETIR radiological centre (Ascires Group). This scientific and technological cooperation between private and public centres has been possible thanks to such instruments as the QUAES-UPF Chair and the project Collaboration Challenges BioDXA, with the aim of promoting research and knowledge transfer in the field of computational technologies applied to health.

Media Contact
Nuria Pérez
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.bone.2019.01.001

Tags: Medicine/HealthPhysiologyTrauma/Injury
Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Epicardial Fat: Protector or Threat to Heart Health?

July 26, 2025
blank

Glymphatic Asymmetry Linked to Parkinson’s Onset Side

July 26, 2025

Theta Stimulation Boosts Conflict Resolution in Parkinson’s

July 26, 2025

Faecal Transplants Show Safety in Parkinson’s Pilot

July 26, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    50 shares
    Share 20 Tweet 13
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • New Measurements Elevate Hubble Tension to a Critical Crisis

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Durable, Flexible Electrochemical Transistors via Electropolymerized PEDOT

Challenges and Opportunities in High-Filled Polymer Manufacturing

Epicardial Fat: Protector or Threat to Heart Health?

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.