• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, July 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Your brain rewards you twice per meal: When you eat and when food reaches your stomach

Bioengineer by Bioengineer
December 27, 2018
in Health
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

We know a good meal can stimulate the release of the feel-good hormone dopamine, and now a study in humans from the Max Planck Institute for Metabolism Research in Germany suggests that dopamine release in the brain occurs at two different times: at the time the food is first ingested and another once the food reaches the stomach. The work appears December 27 in the journal Cell Metabolism.

“With the help of a new positron emission tomography (PET) technique we developed, we were not only able to find the two peaks of dopamine release, but we could also identify the specific brain regions that were associated with these releases,” says senior author Marc Tittgemeyer (@tittgemeyer), head of the Institute’s Translational Neurocircuitry Group. “While the first release occurred in brain regions associated with reward and sensory perception, the post-ingestive release involved additional regions related to higher cognitive functions.”

In the study, 12 healthy volunteers received either a palatable milkshake or a tasteless solution while PET data were recorded. Interestingly, the subjects’ craving or desire for the milkshake was proportionally linked to the amount of dopamine released in particular brain areas at the first tasting. But the higher the craving, the less delayed post-ingestive dopamine was released.

“On one hand, dopamine release mirrors our subjective desire to consume a food item. On the other hand, our desire seems to suppress gut-induced dopamine release,” says Heiko Backes, group leader for Multimodal Imaging of Brain Metabolism at the Institute, who is co-first author on the study with Sharmili Edwin Thanarajah.

Suppression of gut-induced release could potentially cause overeating of highly desired food items. “We continue to eat until sufficient dopamine was released,” Backes says but adds that this hypothesis remains to be tested in further studies.

Earlier experiments have demonstrated gut-induced dopamine release in mice, but this is the first time it has been shown in humans.

###

This research was funded the German Research Foundation in the Transregional Collaborative Research Center and the German Centre for Diabetes Research.

Cell Metabolism, Thanarajah and Backes et al.:” Food intake recruits orosensory and post-ingestive dopaminergic circuits to effect eating desire in humans.” https://www.cell.com/cell-metabolism/fulltext/S1550-4131(18)30743-5

Cell Metabolism (@Cell_Metabolism), published by Cell Press, is a monthly journal that publishes reports of novel results in metabolic biology, from molecular and cellular biology to translational studies. The journal aims to highlight work addressing the molecular mechanisms underlying physiology and homeostasis in health and disease. Visit: http://www.cell.com/cell-metabolism. To receive Cell Press media alerts, contact press@cell.com.

Media Contact
Carly Britton
press@cell.com
617-417-7053
http://dx.doi.org/10.1016/j.cmet.2018.12.006

Tags: BiologyNeurochemistryNutrition/NutrientsOlfactory/Taste
Share12Tweet8Share2ShareShareShare2

Related Posts

Cutting-Edge Neuromodulation Advances in Parkinson’s Disease

Cutting-Edge Neuromodulation Advances in Parkinson’s Disease

July 30, 2025
Merbecovirus S2 Vaccines Trigger Cross-Reactive MERS Protection

Merbecovirus S2 Vaccines Trigger Cross-Reactive MERS Protection

July 29, 2025

Novel Plasma Synuclein Test Advances Parkinson’s Diagnosis

July 29, 2025

Obesity’s Impact on Pancreatic Surgery Outcomes Compared

July 28, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    58 shares
    Share 23 Tweet 15
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cutting-Edge Neuromodulation Advances in Parkinson’s Disease

Processing Environments Shape Food-Related Antibiotic Resistome

Multi-Proteomic Analysis Reveals Host Risks in VZV

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.