{"id":16815,"date":"2016-12-20T16:52:02","date_gmt":"2016-12-20T16:52:02","guid":{"rendered":"https:\/\/bioengineer.org\/einstein-in-an-iron-crystal\/"},"modified":"2016-12-20T16:52:02","modified_gmt":"2016-12-20T16:52:02","slug":"einstein-in-an-iron-crystal","status":"publish","type":"post","link":"https:\/\/bioengineer.org\/einstein-in-an-iron-crystal\/","title":{"rendered":"Einstein in an iron crystal"},"content":{"rendered":"

Tiny relativistic effects form the basis of the functionalities in modern technology, as exemplified in magnetic hard disks and data storage media. Now for the first time, scientists have directly observed features in an electronic structure that could not be seen previously. Angle-resolved photoemission spectroscopy has enabled scientists from Forschungszentrum J\u00fclich and LMU Munich to directly visualize the formation of shifts in the band structure (band gaps) of a sample of prototypical magnetic material as a response to the change in direction of a magnetic field. These gaps in the energy levels of electrons in the iron sample occur in keeping with Einstein's theory of relativity, as electrons flowing through a crystal sample can "sense" the direction of the magnetic field.<\/p>\n

###<\/p>\n

Read more on the homepage of the Peter Gr\u00fcnberg Institute, an institute of Forschungszentrum J\u00fclich: http:\/\/www.fz-juelich.de\/SharedDocs\/Meldungen\/PGI\/PGI-6\/EN\/2016\/2016-12-13_Einstein-Crystal.html<\/p>\n

Here we provide an overview of more selected papers by J\u00fclich scientists that have been published in journals. These notifications comprise a brief summary as well as data regarding the publication: http:\/\/www.fz-juelich.de\/portal\/EN\/Press\/PressReleases\/notifications\/_node.html <\/p>\n

Media Contact<\/strong><\/p>\n

Angela Wenzik
a.wenzik@fz-juelich.de
49-246-161-6048
@fz_juelich <\/p>\n

http:\/\/www.fz-juelich.de <\/p>\n

############<\/p>\n\n

Story Source: <\/b>Materials<\/a> provided by Scienmag<\/span><\/strong><\/p>\n\n","protected":false},"excerpt":{"rendered":"

Tiny relativistic effects form the basis of the functionalities in modern technology, as exemplified in magnetic hard disks and data storage media. Now for the first time, scientists have directly obs..<\/p>\n","protected":false},"author":8,"featured_media":0,"comment_status":"open","ping_status":"closed","sticky":false,"template":"","format":"standard","meta":{"jnews-multi-image_gallery":[],"jnews_single_post":[],"jnews_primary_category":[],"footnotes":""},"categories":[185],"tags":[],"class_list":["post-16815","post","type-post","status-publish","format-standard","hentry","category-science-news"],"_links":{"self":[{"href":"https:\/\/bioengineer.org\/wp-json\/wp\/v2\/posts\/16815","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/bioengineer.org\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/bioengineer.org\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/bioengineer.org\/wp-json\/wp\/v2\/users\/8"}],"replies":[{"embeddable":true,"href":"https:\/\/bioengineer.org\/wp-json\/wp\/v2\/comments?post=16815"}],"version-history":[{"count":0,"href":"https:\/\/bioengineer.org\/wp-json\/wp\/v2\/posts\/16815\/revisions"}],"wp:attachment":[{"href":"https:\/\/bioengineer.org\/wp-json\/wp\/v2\/media?parent=16815"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/bioengineer.org\/wp-json\/wp\/v2\/categories?post=16815"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/bioengineer.org\/wp-json\/wp\/v2\/tags?post=16815"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}} BIOENGINEER.ORG

Page 1 of 7687 1 2 7,687