• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Wild barley from Jordan holds key to stem rust resistance

Bioengineer by Bioengineer
April 7, 2021
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Eva Henningsen

Stem rust is a devastating disease of cereal crops, including barley, one of the first domesticated crops in agriculture and the fourth most widely grown crop in the world. Barley is unique because it is one of only a few crops that can be cultivated in almost any climate and across a range of elevations, making it economically and nutritionally important.

Stem rust is one of the biggest threats to barley production and capable of causing complete crop loss during severe epidemics. And since barley is also used as malt for beer and spirits and feed for animals in addition to food for humans, many industries have a vested interest in making sure barley is protected from stem rust outbreaks.

One of the most important variants of the stem rust pathogen is Ug99, which first emerged in Uganda in the late 1990s and has since spread across Africa and into the Middle East. Races in the Ug99 lineage pose a great threat to cereal production worldwide and with respect to barley are virulent on more than 95% of the cultivars worldwide. Few studies have been done to identify resistance in barley to Ug99 races, but a recent study from the University of Minnesota has made advances in this area.

Led by Eva Henningsen, who was an undergraduate student at the time of this research, plant pathologists at the university turned to a diverse collection of wild barley and discovered several accessions from Jordan that exhibited a high level of stem rust resistance. They then hybridized these wild accessions and, in a significant discovery, found that a single dominant gene, which they designated Rpg7, was responsible for this resistance.

“This gene will be a valuable addition to breeding programs,” explained Brian Steffenson, one of the plant pathologists involved with this research. “Given that the resistant wild barley accessions were discovered in Jordan, this research will also provide clues as to where one might possibly identify additional sources of stem rust resistance.”

###

For more information about this discovery and the process behind it, read “Rpg7: A New Gene for Stem Rust Resistance from Hordeum vulgare ssp. Spontaneum” published in the March issue of Phytopathology.

Media Contact
Ashley Carlin
[email protected]

Related Journal Article

http://dx.doi.org/10.1094/PHYTO-08-20-0325-R

Tags: Agricultural Production/EconomicsAgricultureBiologyFood/Food ScienceGenesGeneticsMolecular BiologyPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Harnessing Alcohol Dehydrogenases for Sustainable Amide and Thioester Synthesis

Harnessing Alcohol Dehydrogenases for Sustainable Amide and Thioester Synthesis

October 8, 2025

How Smoking and Biological Sex Influence Healthy Bladder Tissue Development: New Insights into Cancer Risk

October 8, 2025

Creating Advanced Polymers for Next-Generation Bioelectronics

October 8, 2025

Medicaid Innovation Models Enhance Maternal Care, Highlighting the Importance of Strategic Design

October 8, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1098 shares
    Share 438 Tweet 274
  • New Study Reveals the Science Behind Exercise and Weight Loss

    100 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    79 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Harnessing Alcohol Dehydrogenases for Sustainable Amide and Thioester Synthesis

How Smoking and Biological Sex Influence Healthy Bladder Tissue Development: New Insights into Cancer Risk

Creating Advanced Polymers for Next-Generation Bioelectronics

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.