• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Why Noah’s ark won’t work

Bioengineer by Bioengineer
June 12, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

For ocean species to survive climate change, large populations needed

Credit: Joshua Brown/UVM

A Noah’s Ark strategy will fail. In the roughest sense, that’s the conclusion of a first-of-its-kind study that illuminates which marine species may have the ability to survive in a world where temperatures are rising and oceans are becoming acidic.

Two-by-two, or even moderately sized, remnants may have little chance to persist on a climate-changed planet. Instead, for many species, “we’ll need large populations,” says Melissa Pespeni a biologist at the University of Vermont who led the new research examining how hundreds of thousands of sea urchin larvae responded to experiments where their seawater was made either moderately or extremely acidic.

The study was published on June 11, 2019, in the Proceedings of the Royal Society B.

RARE RELIEF

Pespeni and her team were surprised to discover that rare variation in the DNA of a small minority of the urchins were highly useful for survival. These rare genetic variants are “a bit like having one winter coat among fifty lightweight jackets when the weather hits twenty below in Vermont,” Pespeni says. “It’s that coat that lets you survive.” When the water conditions were made extremely acidic, these rare variants increased in frequency in the larvae. These are the genes that let the next generation of urchins alter how various proteins function–like the ones they use to make their hard-but-easily-dissolved shells and manage the acidity in their cells.

But to maintain these rare variants in the population–plus other needed genetic variation that is more common and allows for response to a range of acid levels in the water–requires many individuals.

“The bigger the population, the more rare variation you’ll have,” says Reid Brennan, a post-doctoral researcher in Pespeni’s UVM lab and lead author on the new study. “If we reduce population sizes, then we’re going to have less fodder for evolution–and less chance to have the rare genetic variation that might be beneficial.”

In other words, some organisms might persist in a climate-changed world because they’re able to change their physiology–think of sweating more; some will be able to migrate, perhaps farther north or upslope. But for many others, their only hope is to evolve–rescued by the potential for change that lies waiting in rare stretches of DNA.

RAPID ADAPTATION

The purple sea urchins the UVM team studied in their Vermont lab are part of natural populations that stretch from Baja, California to Alaska. Found in rocky reefs and kelp forests, these prickly creatures are a favorite snack of sea otters–and a key species in shaping life in the intertidal and subtidal zones. Because of their huge numbers, geographic range, and the varying conditions they live in, the urchins have high “standing genetic variation,” the scientists note. This makes purple urchins likely survivors in the harsh future of an acidified ocean–and good candidates for understanding how marine creatures may adapt to rapidly changing conditions.

It is well understood that rising average global temperatures are a fundamental driver of the imminent extinction faced by a million or more species–as a recent UN biodiversity report notes. But it’s not just rising averages that matter. It may be the hottest–or most acidic–moments that test an organism’s limits and control its survival. And, as the UVM team writes, “the genetic mechanisms that allow rapid adaptation to extreme conditions have been rarely explored.”

CURRENCY IN THE CURRENT SEA

The new study used an innovative “single-generation selection” experiment that began with twenty-five wild-caught adult urchins. Each female produced about 200,000 eggs from which the scientists were able extract DNA out of pools of about 20,000 surviving larvae that were living in differing water conditions. This very large number of individuals gave the scientists a clear view that purple urchins possess a genetic heritage that lets them adapt to extremely acidic ocean water. “This species of sea urchin is going to be okay in the short term. They can respond to these low pH conditions and have the needed genetic variation to evolve,” says UVM’s Reid Brennan. “So long as we do our part to protect their habitats and keep their populations large.”

But coming through the ferocious challenge of rapid climate change may come at a high cost. “It’s hopeful that evolution happens–and it’s surprising and exciting that these rare variants play such a powerful role,” says Melissa Pespeni, an assistant professor in UVM’s biology department and expert on ocean ecosystems. “This discovery has important implications for long-term species persistence. These rare variants are a kind of currency that urchins have to spend,” she says. “But they can only spend it once.”

###

Media Contact
Joshua E. Brown
[email protected]

Related Journal Article

http://dx.doi.org/10.1098/rspb.2019.0943

Tags: BiologyClimate ChangeEcology/EnvironmentMarine/Freshwater Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Spider Web “Decorations” Could Reveal Exact Location of Captured Prey

October 29, 2025
blank

Lehigh University Researchers Create Computational Model to Optimize Neurostimulation Therapy for Atrial Fibrillation

October 29, 2025

Breakthrough in Spinal Cord Injury: Bioinformatics Paves the Way for Regenerative Therapy

October 29, 2025

Unraveling the Science Behind Wildlife Trafficking and Its Links to Organized Crime

October 29, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1290 shares
    Share 515 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    311 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    200 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Improving Pediatric Iodinated Contrast Delivery Worldwide

Neural Networks: The Pathway to Artificial General Intelligence

Mobile Devices Boost Stigmatized Patients’ Online Engagement

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.