• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Why COVID-19 infection curves behave so unexpectedly

Bioengineer by Bioengineer
August 24, 2020
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists at the Complexity Science Hub Vienna are the first to offer an explanation for the linear growth of coronavirus infection curves.

IMAGE

Credit: CSH Vienna

[Vienna, 24 August 2020] With the first COVID-19 epidemic peak behind them, many countries explained the decrease of infection numbers through non-pharmaceutical interventions. Phrases like “social distancing” and “flatten the curve” have become part of common vocabulary. Yet some explanations fell short: How could one explain the linear rise of infection curves, which many countries display after the first peak, in contrast to the S-shaped curves, expected from epidemiological models?

In a new paper published in PNAS (Proceedings of the National Academy of Sciences of the United States of America), scientists at the Complexity Science Hub Vienna (CSH) are the first ones to offer an explanation for the linear growth of the infection curve.

“At the beginning of the pandemic, COVID-19 infection curves showed the expected exponential growth,” says Stefan Thurner, CSH president and professor for Science of Complex Systems at the Medical University of Vienna. This can be well explained by a so-called snowball effect: An infected person would infect a few others, and in a chain reaction, those would pass the virus on to a few others as well. “With measures like social distancing, governments tried to push the growth rate below the recovery rate and therefore massively reduce the number of new infections. In this logic, however, individuals would have infected less than one other person, and the curve would have flattened, eventually reaching zero – something that did not happen,” explains Thurner.

“What we saw instead was a constant level of infections with a similar number of new infections every day,” adds co-author Peter Klimek (CSH & Medical Univ of Vienna). “To explain this with standard epidemiological models would basically be impossible.”

The use of traditional epidemiological models would have required a lot of fine-tuning of parameters, making the model increasingly implausible. “If you want to balance measurements so that the effective reproduction number R stays exactly at 1 – something that would explain the linear growth -, you would have to reduce contacts by the same exact and constant percentage. In reality that is extremely unlikely,” says Klimek.

In fact, the probability to observe linear growth in these standard compartmental models is practically zero, the CSH scientists point out. They were therefore inspired to extend the model and look for further explanations.

The complexity scientists explained the linear shape of the curves through a different form of spreading than initially expected: They assumed that the spreading dynamic continued in small and limited clusters. “Most people went to work, got infected and spread it to two or three people at home, and then those people went to work or school again. The infection was basically spreading from cluster to cluster,” says Stefan Thurner. “The change of the infection curves from being S-shaped to a linear behavior is clearly a network effect – a dynamic very different from big superspreading events.”

The scientists showed that there is a critical number of contacts, which they call degree of contact networks or Dc, below which linear growth and low infection prevalence must occur. They found Dc to equal 7.2, assuming that people circulate in a coronavirus-relevant network of about five people, which is even lower during an effective lockdown (household-size 2.5 people on average).

Instead of having to fine-tune parameters, their model allows for a wide range of possibilities that keep the infection curves linear. It explains why linear infection curves appear in so many countries, irrespective of the magnitude of the imposed non-pharmaceutical interventions.

In a further step the scientists compared Austria, a country which responded with a severe lockdown early on, and the United States, which initially did not impose severe measures. According to Peter Klimek, their model works for both scenarios: “Both types of countries showed linear curves, but in the case of the US and other countries like Sweden, these just happened on a much higher level.”

The model not only explains the emergence of a linear growth regime, but also explains why the epidemic could halt below the levels of herd immunity by consequent social distancing. For the standard modelling procedure, the complexity scientists use a so-called compartmental model with SIR-models, extending it with the described cluster transmission.

But what will happen in the next months, with the potential of numbers rising again? With additional risk factors like people returning from vacation in other countries and more time spent inside, the spread of disease could change. “If infections rise again, there is the potential that linear curves turn to exponential growth again – something people described as a second wave,” Klimek concludes.

###

Stefan Thurner, Peter Klimek, Rudolf Hanel, A network-based explanation of why most COVID-19 infection curves are linear, PNAS Aug 24, 2020 https://doi.org/10.1073/pnas.2010398117

About the Complexity Science Hub Vienna (CSH):

The mission of CSH Vienna is to host, educate, and inspire complex systems scientists dedicated to making sense of Big Data to boost science and society. Scientists at the Hub develop methods for the scientific, quantitative, and predictive understanding of complex systems. Focal areas include the resilience and efficiency of socio-economic and ecological systems, network medicine, the dynamics of innovation, and the science of cities.

The Hub is a joint initiative of AIT Austrian Institute of Technology, Central European University CEU, Danube University Krems, Graz University of Technology, IIASA International Institute for Applied Systems Analysis, IMBA, Medical University of Vienna, TU Wien, VetMedUni Vienna, Vienna University of Economics and Business, and Austrian Economic Chambers (WKO).

http://www.csh.ac.at

Media Contact
Stefan Thurner
[email protected]

Original Source

https://www.csh.ac.at/why-covid-19-infection-curves-behave-so-unexpectedly

Related Journal Article

http://dx.doi.org/10.1073/pnas.2010398117

Tags: Algorithms/ModelsCalculations/Problem-SolvingEpidemiologyMathematics/StatisticsMedicine/HealthPublic HealthSystems/Chaos/Pattern Formation/Complexity
Share15Tweet9Share3ShareShareShare2

Related Posts

Astrocyte Fate in Mouse Septum Driven by Origins, Signals

Astrocyte Fate in Mouse Septum Driven by Origins, Signals

August 3, 2025
blank

AI Predicts Sinus Surgery Outcomes from Images

August 3, 2025

Fat Cell N-Acetylaspartate Controls Post-Meal Body Temperature

August 3, 2025

Boosting Stem Cell Growth with Testis Scaffolds

August 3, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    47 shares
    Share 19 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

30-Hydroxygambogic Acid Boosts Cisplatin Against HPV+ Cancer

Bright Excitons Enable Optical Spin State Control

High-Brightness Quantum Cascade Lasers Operate Efficiently Continuously

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.