• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Which factors control the height of mountains?

Bioengineer by Bioengineer
June 11, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A study in Nature with a surprising finding: It is not erosion

IMAGE

Credit: NASA; Astronaut photograph ISS059-E-517

Which forces and mechanisms determine the height of mountains? A group of researchers from Münster and Potsdam has now found a surprising answer: It is not erosion and weathering of rocks that determine the upper limit of mountain massifs, but rather an equilibrium of forces in the Earth’s crust. This is a fundamentally new and important finding for the earth sciences. The researchers report on it in the scientific journal Nature.

The highest mountain ranges on Earth – such as the Himalayas or the Andes – arise along convergent plate boundaries. At such plate boundaries two tectonic plates move toward each other, and one of the plates is forced beneath the other into the Earth’s mantle. During this process of subduction, strong earthquakes repeatedly occur on the plate interface, and over millions of years mountain ranges are built at the edges of the continents.

Whether the height of mountain ranges is mainly determined by tectonic processes in the Earth’s interior or by erosional processes sculpturing the Earth’s surface has long been debated in geosciences.

A new study led by Armin Dielforder of GFZ German Research Centre for Geoscience now shows that erosion by rivers and glaciers has no significant influence on the height of mountain ranges. Together with scientists from the GFZ and the University of Münster (Germany), he resolved the longstanding debate by analysing the strength of various plate boundaries and calculating the forces acting along the plate interfaces.

The researchers arrived at this surprising result by calculating the forces along different plate boundaries on the Earth. They used data that provide information about the strength of plate boundaries. These data are derived, for example, from heat flow measurements in the subsurface. The heat flow at convergent plate boundaries is in turn influenced by the frictional energy at the interfaces of the continental plates.

One can imagine the formation of mountains using a tablecloth. If you place both hands under the cloth on the table top and push it, the cloth folds and at the same time it slides a little over the back of your hands. The emerging folds would correspond, for instance, to the Andes, the sliding over the back of the hands to the friction in the underground. Depending on the characteristics of the rock, tensions also build up in the deep underground which are discharged in severe earthquakes, especially in subduction zones.

The researchers collected worldwide data from the literature on friction in the subsurface of mountain ranges of different heights (Himalayas, Andes, Sumatra, Japan) and calculated the resulting stress and thus the forces that lead to the uplift of the respective mountains. In this way they showed that in active mountains the force on the plate boundary and the forces resulting from the weight and height of the mountains are in balance.

Such a balance of forces exists in all the mountain ranges studied, although they are located in different climatic zones with widely varying erosion rates. This result shows that mountain ranges are able to react to processes on the Earth’s surface and to grow with rapid erosion in such a way that the balance of forces and the height of the mountain range are maintained. This fundamentally new finding opens up numerous opportunities to study the long-term development and growth of mountains in greater detail.

###

Original study: Dielforder, A., Hetzel, R., & Oncken, O.: Megathrust shear force controls mountain height at convergent plate margins. Nature, https://doi.org/10.1038/s41586-020-2340-7

Media Contact
Josef Zens
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41586-020-2340-7

Tags: Chemistry/Physics/Materials SciencesEarth ScienceGeology/SoilGeophysicsGeophysics/GravityPlate Tectonics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Metalloligand-Driven Cobalt Catalyst Achieves Anti-Markovnikov Hydrosilylation of Alkynes Using Tertiary Silanes

September 22, 2025
blank

SwRI Leads IMAP Payload Development for Upcoming Mission to Map Heliosphere Boundary

September 22, 2025

Radical C–C Coupling Boosts CO₂ Electroreduction

September 22, 2025

Inside the Chemistry: Exploring the Process of Ammonia Synthesis

September 22, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Hidden Threats: How “Forever Chemicals” PFAS Endanger Global Farmlands

Spotting Neonatal Peripheral Infusion Issues Early

Assessing Technology Impact on Agriculture and Resources

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.