• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, April 11, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Where did the Asian longhorned ticks in the US come from?

Bioengineer by Bioengineer
July 8, 2020
in Health
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Rutgers-led research traces the invasion to at least three self-cloning females from northeastern Asia

IMAGE

Credit: Jim Occi

Asian longhorned ticks outside the U.S. can carry debilitating diseases. In the United States and elsewhere they can threaten livestock and pets. The new study, published in the journal Zoonoses and Public Health, sheds new light on the origin of these exotic ticks and how they are spreading across the United States.

“While additional samples from the tick’s native range are needed to pinpoint more exactly the source of the U.S. introduction, our data suggest that they came from one or more locations in northeastern Asia – either through a single introduction of at least three ticks or as multiple introductions from different populations,” said lead author Andrea M. Egizi, a visiting professor in the Department of Entomology at Rutgers University-New Brunswick and a research scientist with the Monmouth County Tick-borne Diseases Laboratory hosted by the Rutgers Center for Vector Biology.

In 2017, Rutgers Center for Vector Biology and other researchers detected an infestation of the Asian longhorned tick (Haemaphysalis longicornis), which is native to East Asia, in New Jersey. It was the first time established populations of this species had been detected in the United States. Subsequent investigations found the tick to be widespread in the eastern U.S. Rutgers researchers discovered it has been present in New Jersey since at least 2013.

Although this species transmits serious illnesses to people and animals in other countries, experts don’t know whether the tick populations in the United States will make people sick, according to the U.S. Centers for Disease Control and Prevention.

The species has two forms: one with males and females, and one with self-cloning females that lay eggs without needing to mate, a process called “parthenogenesis.” The self-cloning form, free from the need to look for mates, are especially likely to thrive and spread. A single female can establish a fast-growing population. This type entered Australia and New Zealand in the early 1900s, and now causes significant losses in the cattle industry.

Rutgers Center for Vector Biology researchers enlisted about 25 collaborators at 20 institutions to get samples of Asian longhorned ticks across the United States and internationally, and used gene sequencing to detect genetic similarities and differences between various populations.

Their findings indicate that at least three individual ticks, from self-cloning populations, were brought to the United States, which explains why all adult Asian longhorned ticks found in the U.S. so far have been female. Overall, U.S. ticks are more likely to have come from an East Asian country (or countries) than from Australia and New Zealand.

As part of the study, the U.S. Department of Agriculture Animal and Plant Health Inspection Service, Veterinary Services found evidence that these ticks traveled within the United States on wildlife as well as through the transport of pets or livestock.

“One thing we uncovered is the ease with which pets, especially dogs, can accidentally help ticks cross international borders and state lines,” said senior author Dina M. Fonseca, a professor and director of the Center for Vector Biology in the Department of Entomology in the School of Environmental and Biological Sciences. “Many countries require dogs to be treated for ticks and other parasites before entering the country, but the United States does not. We urge greater awareness of this issue to prevent future exotic tick introductions.”

Rutgers-affiliated coauthors include Matthew Bickerton and James L. Occi, both entomology doctoral students.

Media Contact
Todd Bates
[email protected]

Original Source

https://www.rutgers.edu/news/where-did-asian-longhorned-ticks-us-come

Related Journal Article

http://dx.doi.org/10.1111/zph.12743

Tags: Agricultural Production/EconomicsBiologyEcology/EnvironmentEntomologyEnvironmental HealthGeneticsInfectious/Emerging DiseasesParasitologyPublic Health
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

MD Anderson researchers highlight advances in clinical studies at the AACR Annual Meeting 2021

April 11, 2021
IMAGE

Level of chromosomal abnormality in lung cancer may predict immunotherapy response

April 10, 2021

Mutant KRAS and p53 cooperate to drive pancreatic cancer metastasis

April 10, 2021

UNT Health Science Center leads health literacy outreach in seven states

April 9, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    851 shares
    Share 340 Tweet 213
  • Jonathan Wall receives $1.79 million to develop new amyloidosis treatment

    59 shares
    Share 24 Tweet 15
  • UofL, Medtronic to develop epidural stimulation algorithms for spinal cord injury

    56 shares
    Share 22 Tweet 14
  • A sturdier spike protein explains the faster spread of coronavirus variants

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Cell BiologyGeneticsMedicine/HealthClimate ChangeInfectious/Emerging DiseasesTechnology/Engineering/Computer SciencePublic HealthMaterialscancerEcology/EnvironmentChemistry/Physics/Materials SciencesBiology

Recent Posts

  • MD Anderson researchers highlight advances in clinical studies at the AACR Annual Meeting 2021
  • Men with low health literacy less likely to choose active surveillance for prostate cancer after tumor profiling
  • Level of chromosomal abnormality in lung cancer may predict immunotherapy response
  • Mutant KRAS and p53 cooperate to drive pancreatic cancer metastasis
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In