• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

What’s in this plant? The best automated system for finding potential drugs

Bioengineer by Bioengineer
March 28, 2019
in Cancer
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Public domain

Researchers at the RIKEN Center for Sustainable Resource Science (CSRS) in Japan have developed a new computational mass-spectrometry system for identifying metabolomes–entire sets of metabolites for different living organisms. When the new method was tested on select tissues from 12 plants species, it was able to note over a thousand metabolites. Among them were dozens that had never been found before, including those with antibiotic and anti-cancer potential.

The common pain reliever aspirin (acetylsalicylic acid) was first made in the 19th century, and is famously derived from willow bark extract, a medicine that was described in clay tablets thousands of years ago. After a new method of synthesis was discovered, and after it had been used around the world for almost 70 years, scientists were finally able to understand how it works. This was a long historical process, and while plants remain an almost infinite resource for drug discovery and biotechnology, thousands of years is no longer an acceptable time frame.

Why does it take so long?

The biggest problem is that there are millions of plant species and each has its own metabolome–the set of all products of the plant’s metabolism. Currently, we only know about 5% of all these natural products. Although mass spectrometry can identify plant metabolites, it only works for determining if a sample contains a given molecule. Searching for as-yet-unknown metabolites is another story.

Computational mass spectrometry is a growing research field that focuses on finding previously unknown metabolites and predicting their functions. The field has established metabolome databases and repositories, which facilitate global identification of human, plant, and microbiota metabolomes. Led by Hiroshi Tsugawa and Kazuki Saito, a team at CSRS has spent several years developing a system that can quickly identify large numbers of plant metabolites, including those that have not been identified before.

As Tsugawa explains, “while no software can comprehensively identify all the metabolites in a living organism, our program incorporates new techniques in computational mass spectrometry and provides 10 times the coverage of previous methods.” In tests, while mass spectrometry-based methods only noted about one hundred metabolites, the team’s new system was able to find more than one thousand.

The new computational technique relies on several new algorithms that compare the mass spectrometry outputs from plants that are labeled with carbon-13 with those that are not. The algorithms can predict the molecular formula of the metabolites and classify them by type. They can also predict the substructure of unknown metabolites, and based on similarities in structure, link them to known metabolites, which can help predict their functions.

Being able to find unknown metabolites is a key selling point for the new software. In particular, the system was able to characterize a class of antibiotics (benzoxazinoids) in rice and maize as well as a class with anti-inflammatory and antibacterial properties (glycoalkaloids) in the common onion, tomato, and potato. It was also able to identify two classes of anti-cancer metabolites, one (triterpene saponins) in soy beans and licorice, and the other (beta-carboline alkaloid) in a plant from the coffee family.

In addition to facilitating the screening of plant-specialized metabolomes, the new process will speed up the discovery of natural products that could be used in medicines, and also increase understanding of plant physiology in general.

As Tsugawa notes, use of this new method is not limited to plants. “I believe that computationally decoding metabolomic mass spectrometry data is linked to a deeper understanding of all metabolisms. Our next goal is to improve this methodology to facilitate global identification of human and microbiota metabolomes as well. Newly found metabolites can then be further investigated via genomics, transcriptomics, and proteomics.”

###

This study was published March, 28 in Nature Methods.

Reference: Tsugawa et al. (2019) A cheminformatics approach to characterize metabolomes in stable isotope-labeled organisms. Nature Methods. doi: 10.1038/s41592-019-0358-2

Media Contact
Adam Phillips
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41592-019-0358-2

Tags: BiochemistryBiologycancerMedicine/HealthMetabolism/Metabolic DiseasesPharmaceutical SciencePlant SciencesTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Short-Course Radiation Therapy Following Prostate Surgery Reduces Cancer Recurrence Risk

October 2, 2025

How Does Cellular Activity in Early Life Impact Cancer and Aging?

October 2, 2025

MSK’s Breakthrough Highlights from ASTRO 2025

October 2, 2025

Topical Cream Alleviates Skin Side Effects of Chemotherapy

October 2, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    92 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    86 shares
    Share 34 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Comprehensive Analysis of Cystic Fibrosis Treatments for Kids

Exploring Phytobiotics in Fish and Shellfish

New NDUFA3 Variants Linked to Mitochondrial Disorder

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.