• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

What’s in a name? A new class of superconductors

Bioengineer by Bioengineer
January 25, 2021
in Chemistry
Reading Time: 5 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Commonly mistaken name leads to broader discovery by Rice, Arizona State physicists

IMAGE

Credit: Photo by Jeff Fitlow/Rice University

HOUSTON – (Jan. 25, 2021) – A new theory that could explain how unconventional superconductivity arises in a diverse set of compounds might never have happened if physicists Qimiao Si and Emilian Nica had chosen a different name for their 2017 model of orbital-selective superconductivity.

In a study published this month in npj Quantum Materials, Si of Rice University and Nica of Arizona State University argue that unconventional superconductivity in some iron-based and heavy-fermion materials arises from a general phenomenon called “multiorbital singlet pairing.”

In superconductors, electrons form pairs and flow without resistance. Physicists cannot fully explain how pairs form in unconventional superconductors, where quantum forces give rise to strange behavior. Heavy fermions, another quantum material, feature electrons that appear to be thousands of times more massive than ordinary electrons.

Si and Nica proposed the idea of selective pairing within atomic orbitals in 2017 to explain unconventional superconductivity in alkaline iron selenides. The following year, they applied the orbital-selective model to the heavy fermion material in which unconventional superconductivity was first demonstrated in 1979.

They considered naming the model after a related mathematical expression made famous by quantum pioneer Wolfgang Pauli, but opted to call it d+d. The name refers to mathematical wave functions that describe quantum states.

“It’s like you have a pair of electrons that dance with each other,” said Si, Rice’s Harry C. and Olga K. Wiess Professor of Physics and Astronomy. “You can characterize that dance by s- wave, p-wave and d-wave channels, and d+d refers to two different kinds of d-waves that fuse together into one.”

In the year after publishing the d+d model, Si gave many lectures about the work and found audience members frequently got the name confused with “d+id,” the name of another pairing state that physicists have discussed for more than a quarter century.

“People would approach me after a lecture and say, ‘Your theory of d+id is really interesting,’ and they meant it as a compliment, but it happened so often it got annoying,” said Si, who also directs the Rice Center for Quantum Materials (RCQM).

In mid-2019, Si and Nica met over lunch while visiting Los Alamos National Laboratory, and began sharing stories about the d+d versus d+id confusion.

“That led to a discussion of whether d+d might be connected with d+id in a meaningful way, and we realized it was not a joke,” Nica said.

The connection involved d+d pairing states and those made famous by the Nobel Prize-winning discovery of helium-3 superfluidity.

“There are two types of superfluid pairing states of liquid helium-3, one called the B phase and the other the A phase,” Nica said. “Empirically, the B phase is similar to our d+d, while the A phase is almost like a d+id.”

The analogy got more intriguing when they discussed mathematics. Physicists use matrix calculations to describe quantum pairing states in helium-3, and that is also the case for the d+d model.

“You have a number of different ways of organizing that matrix, and we realized our d+d matrix for the orbital space was like a different form of the d+id matrix that describes helium-3 pairing in spin space,” Nica said.

Si said the associations with superfluid helium-3 pairing states have helped he and Nica advance a more complete description of pairing states in both iron-based and heavy-fermion superconductors.

“As Emil and I talked more, we realized the periodic table for superconducting pairing was incomplete,” Si said, referring to the chart physicists use to organize superconducting pairing states.

“We use symmetries — like lattice or spin arrangements, or whether time moving forward versus backward is equivalent, which is time-reversal symmetry — to organize possible pairing states,” he said. “Our revelation was that d+id can be found in the existing list. You can use the periodic table to construct it. But d+d, you cannot. It’s beyond the periodic table, because the table doesn’t include orbitals.”

Si said orbitals are important for describing the behavior of materials like iron-based superconductors and heavy fermions, where “very strong electron-electron correlations play a crucial role.”

“Based on our work, the table needs to be expanded to include orbital indices,” Si said.

The research was supported by a startup grant from Arizona State University, the Department of Energy (DE-SC0018197), the Welch Foundation (C-1411) and the National Science Foundation (PHY-1607611).

RCQM is a multidisciplinary research effort that leverages the strengths and global partnerships of more than 20 Rice research groups.

###

Links and resources:

The DOI of the npj Quantum Materials paper is: 10.1038/s41535-020-00304-3

A copy of the paper is available at: https://doi.org/10.1038/s41535-020-00304-3

Rice Center for Quantum Materials: https://rcqm.rice.edu/

High-resolution IMAGES are available for download at:

http://bit.ly/39mlq3V

CAPTION: “Levitation of a magnet on top of a superconductor 2” by Jubobroff, Fbouquet, LPS is licensed under CC BY-SA 3.0.

http://news.rice.edu/wp-content/uploads/2014/09/0929_RCQM-Si1-lg.jpg

CAPTION: Qimiao Si is the Harry C. and Olga K. Wiess Professor of Physics and Astronomy at Rice University and director of the Rice Center for Quantum Materials. (Photo by Jeff Fitlow/Rice University)

https://news-network.rice.edu/news/files/2021/01/0111_DD-en-lg.jpg

CAPTION: Emilian Nica is a postdoctoral research scholar in physics at Arizona State University. (Image courtesy of E. Nica)

This release can be found online at news.rice.edu.

Follow Rice News and Media Relations via Twitter @RiceUNews.

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,978 undergraduates and 3,192 graduate students, Rice’s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 1 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance.

Media Contact
Jade Boyd
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41535-020-00304-3

Tags: Chemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsElectromagneticsMaterialsSuperconductors/Semiconductors
Share12Tweet8Share2ShareShareShare2

Related Posts

Rice membrane extracts lithium from brine faster and with reduced waste

Rice membrane extracts lithium from brine faster and with reduced waste

October 2, 2025
blank

Pseudokinases Drive Peptide Cyclization via Thioether Crosslinking

October 2, 2025

MIT Researchers Develop Simple Formula to Enhance Fast-Charging, Durable Batteries

October 2, 2025

Registration and Scientific Program Now Open for Upcoming Plasma Physics Conference

October 2, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    92 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    86 shares
    Share 34 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Comparing Cell Viability: Flow Cytometry vs. Microscopy

Study: COVID-19 Boosters Effective in Immunosuppressed Kids

Mediatizing Egypt’s New Administrative Capital Development

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.