• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, April 21, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

‘We marry disorder with order’

Bioengineer by Bioengineer
March 17, 2021
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Physicists able to determine properties of mesoporous materials more precisely

IMAGE

Credit: Photo: Swen Reichhold, Leipzig University

He and his research group have found a way to more precisely determine the properties of these materials, because they can better account for the underlying disorder. Their article has been designated “ACS Editors’ Choice” by the editors of the American Chemical Society journals, who recognise the “importance to the global scientific community” of the Leipzig researchers’ work and see it as a breakthrough in the accurate description of phase transition phenomena in disordered porous materials.

In mesoporous materials, the pore openings are far smaller than in a normal sponge: their diameters range from 2 to 50 nanometres and are invisible to the naked eye. Nevertheless, they have a number of interesting properties, including with regard to separating substances. This occurs as a function of molecule and pore size, for example.

Until now, scientific experiments have only been able to approximate the desired properties of these materials. “So it is more down to experience whether you can determine which of the structures can be used for which applications,” says the physicist. The problem is that these materials are mostly disordered, which means that pores of different sizes in the material form a complex network structure.

Researchers at Leipzig University developed a model that determines the features that can be observed in such complex pore networks. Professor Valiullin describes the approach as follows: “We can statistically describe how the individual pores in these networks are coupled to each other. We marry disorder with order.” This makes it possible to determine the physical phenomena that need to be understood in gas-liquid and solid-liquid phase transitions, for example. And not only in theory: using special mesoporous modelling, it was possible to prove with the aid of modern nuclear magnetic resonance methods that the theoretical results can also be directly applied in practice.

This should make it easier to use such materials in the future, for example to help release drugs into the human body over an extended period – precisely when necessary and desired. Other potential applications for such materials include sensor technology or energy storage and conversion.

###

Original title of the publication in the American Chemical Society journal Langmuir:

“Impact of Geometrical Disorder on Phase Equilibria of Fluids and Solids Confined in Mesoporous Materials”, doi.org/10.1021/acs.langmuir.0c03047

Jörg Aberger

Media Contact
Prof. Dr. Rustem Valiullin
[email protected]

Original Source

http://www.uni-leipzig.de/en/newsdetail/artikel/wir-vermaehlen-die-unordnung-mit-der-ordnung-2021-03-17//

Related Journal Article

http://dx.doi.org/10.1021/acs.langmuir.0c03047

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesMaterialsNanotechnology/MicromachinesParticle Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

A “finger phantom” to train treatment of trigger finger using ultrasound guidance

April 21, 2021
IMAGE

Direct observation of the ad- and desorption of guest atoms into a mesoporous host

April 21, 2021

New process breaks down biodegradable plastics faster

April 21, 2021

Bubble with titanium trigger titanic explosions

April 21, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    A sturdier spike protein explains the faster spread of coronavirus variants

    44 shares
    Share 18 Tweet 11
  • UofL, Medtronic to develop epidural stimulation algorithms for spinal cord injury

    56 shares
    Share 22 Tweet 14
  • Jonathan Wall receives $1.79 million to develop new amyloidosis treatment

    61 shares
    Share 24 Tweet 15
  • New evidence in search for the mysterious Denisovans

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

WeaponryUrbanizationVaccinesUrogenital SystemVehiclesVirusUniversity of WashingtonVirologyWeather/StormsZoology/Veterinary ScienceViolence/CriminalsVaccine

Recent Posts

  • A “finger phantom” to train treatment of trigger finger using ultrasound guidance
  • A growing problem of ‘deepfake geography’: How AI falsifies satellite images
  • Study: ‘Fingerprint’ for 3D printer accurate 92% of time
  • Microplastics affect global nutrient cycle and oxygen levels in the ocean
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In