• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

‘We marry disorder with order’

Bioengineer by Bioengineer
March 17, 2021
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Physicists able to determine properties of mesoporous materials more precisely

IMAGE

Credit: Photo: Swen Reichhold, Leipzig University

He and his research group have found a way to more precisely determine the properties of these materials, because they can better account for the underlying disorder. Their article has been designated “ACS Editors’ Choice” by the editors of the American Chemical Society journals, who recognise the “importance to the global scientific community” of the Leipzig researchers’ work and see it as a breakthrough in the accurate description of phase transition phenomena in disordered porous materials.

In mesoporous materials, the pore openings are far smaller than in a normal sponge: their diameters range from 2 to 50 nanometres and are invisible to the naked eye. Nevertheless, they have a number of interesting properties, including with regard to separating substances. This occurs as a function of molecule and pore size, for example.

Until now, scientific experiments have only been able to approximate the desired properties of these materials. “So it is more down to experience whether you can determine which of the structures can be used for which applications,” says the physicist. The problem is that these materials are mostly disordered, which means that pores of different sizes in the material form a complex network structure.

Researchers at Leipzig University developed a model that determines the features that can be observed in such complex pore networks. Professor Valiullin describes the approach as follows: “We can statistically describe how the individual pores in these networks are coupled to each other. We marry disorder with order.” This makes it possible to determine the physical phenomena that need to be understood in gas-liquid and solid-liquid phase transitions, for example. And not only in theory: using special mesoporous modelling, it was possible to prove with the aid of modern nuclear magnetic resonance methods that the theoretical results can also be directly applied in practice.

This should make it easier to use such materials in the future, for example to help release drugs into the human body over an extended period – precisely when necessary and desired. Other potential applications for such materials include sensor technology or energy storage and conversion.

###

Original title of the publication in the American Chemical Society journal Langmuir:

“Impact of Geometrical Disorder on Phase Equilibria of Fluids and Solids Confined in Mesoporous Materials”, doi.org/10.1021/acs.langmuir.0c03047

Jörg Aberger

Media Contact
Prof. Dr. Rustem Valiullin
[email protected]

Original Source

http://www.uni-leipzig.de/en/newsdetail/artikel/wir-vermaehlen-die-unordnung-mit-der-ordnung-2021-03-17//

Related Journal Article

http://dx.doi.org/10.1021/acs.langmuir.0c03047

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesMaterialsNanotechnology/MicromachinesParticle Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

New AI Technology Revolutionizes Visualization Inside Fusion Energy Systems

October 1, 2025
Urban Air Harbors Pathogenic Yeast Strains Absent from Coastal Areas

Urban Air Harbors Pathogenic Yeast Strains Absent from Coastal Areas

October 1, 2025

Dual Dynamic Helical Poly(disulfide)s: Adaptive, Recyclable Polymers

October 1, 2025

Atom-photon entanglement breakthrough opens new horizons for future quantum networks

September 30, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    89 shares
    Share 36 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    62 shares
    Share 25 Tweet 16
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    57 shares
    Share 23 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nurses Prefer Phone Calls in Physician Rounds Study

Severe GBA1 Variants Shape Parkinson’s Disease Outcomes

Early Echocardiography Predicts Survival in Diaphragmatic Hernia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.