• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Warmer water, chemical exposure influence gene expression across generations in a coastal fish

Bioengineer by Bioengineer
January 31, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

CORVALLIS, Ore. – Warmer water temperatures, combined with low-level exposure to chemicals already known to be harmful to aquatic life, influence the expression of genes in the offspring of an abundant North American fish species – and threaten organisms whose sex determination is sensitive to water temperature.

The finding is published in the online journal PeerJ.

Previous, related research has shown these same exposures to endocrine disrupting compounds (EDCs) lead to exhibited altered sex ratios, lower fertility rates and deformities in inland silversides (Menidia beryllina).

In the PeerJ study, exposure to the insecticide bifenthrin didn’t cause adverse effects and changes in gene expression in the fish until the second generation.

“This means the cells that are created prior to becoming sperm or egg are sometimes more susceptible to EDCs,” said the study’s lead author, Bethany DeCourten, a doctoral student at Oregon State University. “The full extent of adverse effects caused by a combination of exposure to elevated temperatures and common chemicals may not be fully realized by short-term or single generation testing in fish, which is currently how regulatory decisions are made.”

Further, changes in the expression of genes involved in hormone production were more common in parental fish and their offspring that were exposed at the warmer water temperatures predicted by the Intergovernmental Panel on Climate Change.

“This indicates that exposure to chemicals commonly found in run-off or effluent entering aquatic ecosystems may have stronger effects under future climate scenarios,” said Susanne Brander, an aquatic toxicologist at Oregon State University who co-authored the study.

Inland silversides are small–adults are about 4 inches long–and are native to estuaries in eastern North America and the Gulf of Mexico and have been introduced to California. They primarily feed on zooplankton and are an important prey species for a variety of birds and commercially valuable fish.

The compounds studied by the researchers were bifenthrin, commonly used for mosquito control, and ethinylestradiol (EE2), a synthetic estrogen found in almost all combined forms of birth control pills.

A large portion of EE2 is not absorbed by the body and is excreted in urine. Wastewater treatment plants generally aren’t equipped to eliminate such chemicals and they end up in rivers, and eventually estuaries. Bifenthrin is used to control insects in homes, orchards and nurseries.

In the study, three generations of silversides were exposed to a nanogram per liter of bifenthrin and EE2, in water at 22 degrees Celsius (71.6 degrees Fahrenheit) and 28 degrees Celsius (82.4 degrees Fahrenheit).

“The exposure levels were equivalent to a drop of chemical in an Olympic-sized swimming pool,” Brander said.

Adult parental fish were exposed for 14 days prior to spawning of the next generation. Their larvae were then exposed from fertilization until 21 days post-hatch before being transferred to clean water tanks. Those larvae were reared to adulthood, then spawned in clean water to test for further effects of parental exposure on offspring.

Collaborating on the study was Richard Connon at the University of California, Davis.

Brander and DeCourten conducted the research at the University of North Carolina Wilmington. Brander is an assistant professor in the Department of Environmental and Molecular Toxicology in OSU’s College of Agricultural Sciences.

In 2017, Brander was hired under OSU’s Marine Studies Initiative, a comprehensive effort to address ocean health and coastal challenges by creating a global education and research program that blends the science of oceanography with business, engineering, education, the arts and humanities, agriculture sciences, forestry and social sciences.

The study was funded by the California Department of Fish and Wildlife, the U.S. Environmental Protection Agency, the Francis Peter Fensel Memorial Fellowship and the John Colucci Income Fund.

###

Media Contact
Susanne Brander
[email protected]
541-737-3791

Related Journal Article

https://today.oregonstate.edu/news/blend-warmer-water-chemical-exposure-influence-gene-expression-across-generations-coastal-fish
http://dx.doi.org/10.7717/peerj.6156

Tags: BiologyClimate ChangeDevelopmental/Reproductive BiologyEcology/EnvironmentGenesMarine/Freshwater BiologyToxicology
Share12Tweet7Share2ShareShareShare1

Related Posts

Unraveling Fat Maps: Microfluidics and Mass Spectrometry Illuminate Lipid Landscapes in Tiny Worms

Unraveling Fat Maps: Microfluidics and Mass Spectrometry Illuminate Lipid Landscapes in Tiny Worms

August 22, 2025
blank

SARS-CoV-2 Triggers Pro-Fibrotic, Pro-Thrombotic Foam Cells

August 22, 2025

RETICULATA1: Key Plastid Basic Amino Acid Transporter

August 22, 2025

Link Between Halquinol and Antibiotic Resistance Explored

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Maternal and Child Health Inequities in Sub-Saharan Africa

Circ_0000847 Drives Colorectal Cancer via IGF2BP2 Binding

Sensitive Surfaces and Keen Senses: Innovative Robotics Detect Threats Before Impact

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.