• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Warm seas scatter fish

Bioengineer by Bioengineer
February 28, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Climate change is shifting productivity of fisheries worldwide

Fish provide a vital source of protein for over half the world’s population, with over 56 million people employed by or subsisting on fisheries. But climate change is beginning to disrupt the complex, interconnected systems that underpin this major source of food.

A team of scientists led by Christopher Free, a postdoctoral scholar at UC Santa Barbara’s Bren School of Environmental Science & Management, has published an investigation of how warming waters may affect the productivity of fisheries. The results appear in the journal Science.

The study looked at historical abundance data for 124 species in 38 regions, which represents roughly one-third of the reported global catch. The researchers compared this data to records of ocean temperature and found that 8 percent of populations were significantly negatively impacted by warming, while 4 percent saw positive impacts. Overall, though, the losses outweigh the gains.

“We were surprised how strongly fish populations around the world have already been affected by warming,” said Free, “and that, among the populations we studied, the climate ‘losers’ outweigh the climate ‘winners.'”

Region had the greatest influence on how fish responded to rising temperatures, according to the study. Species in the same region tended to respond in similar ways. Fishes in the same families also showed similarities in how they responded to changes. The researchers reasoned that related species would have similar traits and lifecycles, giving them similar strengths and vulnerabilities.

When examining how the availability of fish for food has changed from 1930 to 2010, the researchers saw the greatest losses in productivity in the Sea of Japan, North Sea, Iberian Coastal, Kuroshio Current and Celtic-Biscay Shelf ecoregions. On the other hand, the greatest gains occurred in the Labrador-Newfoundland region, Baltic Sea, Indian Ocean and Northeastern United States.

Although the changes in fisheries productivity have so far been small, there are vast regional discrepancies. For instance, East Asia has seen some of the largest warming-driven declines, with 15 to 35 percent reductions in fisheries productivity. “This means 15 to 35 percent less fish available for food and employment in a region with some of the fastest growing human populations in the world,” said Free. Mitigating the impacts of regional disparities will be a major challenge in the future.

These findings highlight the importance of accounting for the effects of climate change in fisheries management. This means coming up with new tools for assessing the size of fish populations, new strategies for setting catch limits that consider changing productivity, and new agreements for sharing catch between winning and losing regions, Free explained.

“Knowing exactly how fisheries will change under future warming is challenging, but we do know that failing to adapt to changing fisheries productivity will result in less food and fewer profits relative to today,” Free explained.

Preventing overfishing will be a critical part of addressing the threat that climate change poses to the world’s fisheries. “Overfishing presents a one-two punch,” said Free. It makes fish populations more vulnerable to warming, while warming hinders the recovery of overfished populations.

Free also stressed that ocean warming is just one of many processes affecting marine life and the industries that rely on it. Ocean acidification, falling oxygen levels and habitat loss will also impact marine life. More research is necessary to fully understand how climate change will affect fish populations and the livelihoods of people that depend on them.

###

Media Contact
Harrison Tasoff
[email protected]
https://www.news.ucsb.edu/2019/019360/warm-seas-scatter-fish

Tags: AgricultureBiologyClimate ChangeFisheries/AquacultureMarine/Freshwater Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Genetic Traits of Enterocytozoon bieneusi in Hebei Cattle

Genetic Traits of Enterocytozoon bieneusi in Hebei Cattle

August 7, 2025
Exploring the Links Between Demographics, Lifestyle, Comorbidities, Prediabetes, and Mortality

Exploring the Links Between Demographics, Lifestyle, Comorbidities, Prediabetes, and Mortality

August 7, 2025

Mapping SeGPx in S. digitata Genome and Extract

August 7, 2025

Enzyme-Responsive Packaging Revolutionizes Food Preservation

August 7, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    76 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    48 shares
    Share 19 Tweet 12
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Pear-Shaped Bodies May Lower Gout Risk, Study Finds

SERENA-6: Advancing Precision Cancer Medicine with ctDNA

Phosphorylated α-Synuclein in Fluids Misleading for Synucleinopathy

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.