• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, March 25, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Walking a tight line to study the properties of soft materials

Bioengineer by Bioengineer
November 30, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: Inoue D. et al., Nature Communications, October 3, 2016

The researchers employed a concept that is a part of the transportation network in cells. "Walking" filament-shaped proteins, such as kinesin, carry cargo on one of their ends while two foot-shaped structures on the other end move one "foot" in front of the other along a network of associated protein microtubules in the cells.

The team aimed to test whether these walking proteins and their associated proteins could be used as a sensor for stretching and compressing a soft silicon-based material polydimethylsiloxane (PDMS) that is used, for example, in manufacturing contact lenses.

First, they deposited kinesin motor proteins on the surface of the PDMS so that one end of the kinesin proteins was attached to the PDMS, while the other end remained free. Next, the team deposited fluorescent-microtubules on the kinesin-layered surface. The layered PDMS was then placed in a special stretch chamber that was observed under the microscope.

When the team neither stretched nor compressed the PDMS, the microtubules moved randomly on the PDMS surface at a constant velocity. This movement effectively happens due to the kinesin proteins "walking in place" because they are attached to the surface of the PDMS. But as they move their "feet" along the free microtubules, the microtubules are forced to move around randomly on the material's surface.

When the team stretched the PDMS, the microtubules moved faster and aligned themselves parallel to the stretching axis. The density of kinesin proteins on the surface also decreased as a result of the stretching. When the PDMS were compressed, however, the microtubules slowed down and aligned themselves perpendicular to the compression axis, while the density of kinesin proteins on the surface of the material increased.

The team also tested the use of the microtubules as "probes" to detect the mechanical deformation of another soft material, polyurethane, a material commonly used in the manufacture of artificial skin and heart valves, and came up with similar results.

"Although further research is still required to prevent the denaturation of the proteins which occurs during the experiment, our present work should facilitate the elucidation of the surface science of soft materials in the future," the researchers say in their study published in the journal Nature Communications. Akira Kakugo, the lead author of the paper, further explains: "since deforming soft materials provides environments that resemble living cells, our method could also help make clear the functions and mechanisms of motor proteins and microtubules interacting in the cells."

###

Media Contact

Naoki Namba (Media Officer)
[email protected]
81-117-068-034
@hokkaido_uni

http://www.oia.hokudai.ac.jp/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Picture1.png

Is early rhythm control in atrial fibrillation care cost-effective?

March 25, 2023
Transitions of low and high-entropy metal tellurides.

“Glassiness” and “blurriness” might explain the behavior of high-entropy superconductors

March 25, 2023

Illinois Tech Assistant Professor Ren Wang receives prestigious National Science Foundation Award

March 24, 2023

New type of entanglement lets scientists ‘see’ inside nuclei

March 24, 2023
Please login to join discussion

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    65 shares
    Share 26 Tweet 16
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    43 shares
    Share 17 Tweet 11
  • Insular dwarfs and giants more likely to go extinct

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Is early rhythm control in atrial fibrillation care cost-effective?

“Glassiness” and “blurriness” might explain the behavior of high-entropy superconductors

Illinois Tech Assistant Professor Ren Wang receives prestigious National Science Foundation Award

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In