• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Waking up sleeping bacteria to fight infections

Bioengineer by Bioengineer
July 18, 2019
in Science
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers in the group of Jan Michiels (VIB-KU Leuven Center for Microbiology) identified a mechanism of how sleepy bacteria wake up. This finding is important, as sleepy cells are often responsible for the stubbornness of chronic infections. Findings published in Molecular Cell reveal new perspectives on how to treat chronic infections, for example by forcing bacteria to wake up.

Sleeping bacteria

Bacteria are able to fall into a deep sleep. These sleeping bacteria are called ‘persisters’ and they can be found in every type of bacterial population studied so far, including important human pathogens. From a patient’s point of view, persisters are unwanted as their sleeping state makes them insensitive to antibiotics.

These sleeping bacteria may wake up spontaneously and colonize the host leading to a return of the infection. Hence, persisters are associated with the failure of antibiotic therapy when they are not killed by the immune system. Until now, it was unknown how these cells were able to revert from dormant to active state. These new results provide insight into how persisters wake up.

Breaking links to wake up

To investigate how persisters wake up, the scientists used an E. coli model system based on HokB. HokB is a peptide – a small cousin of proteins – which is known to promote the development of persister cells by forming pores in the bacterial cell membrane. This results into a rapid loss of energy, pushing the bacteria into a low energy state or deep sleep. Importantly, this pore formation is only possible when two HokB peptides are linked together. The awakening of these sleeping bacteria is possible only when the link between the peptides is broken. This in turn breaks up the pore. Only when the pore is degraded, cells are able to energize again by consuming available nutrients.

Lead author Dorien Wilmaerts (VIB-KU Leuven Center for Microbiology) says: “You can compare this process with a punctured tire: you take out the spike first, and then inflate it again. Doing it the other way around does not make sense.”

Getting rid of chronic infections

Persister cells are responsible for chronic infections that keep returning. Examples are urinary tract infections by Escherichia coli, lung infections in cystic fibrosis patients by Pseudomonas aeruginosa, or tuberculosis by Mycobacterium tuberculosis. How persister cells wake up is a long-standing question in persistence research. This work is the first to provide a detailed mechanistic understanding of an awakening mechanism and opens up new perspectives on how to stimulate awakening of deeply dormant cells.

Prof. Jan Michiels (VIB-KU Leuven) says: “Results from this work may help us to discover novel molecules and to design new strategies to eradicate persisters. Combinations of molecules stimulating awakening together with classical antibiotics could eradicate chronic infections.”

###

Publication

HokB monomerization and membrane repolarization control persister awakening, Wilmaerts et al., Molecular Cell 2019

Funding

This work was supported by grants from the FWO (G055517N, G047112N, G0B2515N) and the Interuniversity Attraction Poles-Belgian Science Policy Office IAP-BELSPO (IAP P7/28).

Questions from patients

A breakthrough in research is not the same as a breakthrough in medicine. The realizations of VIB researchers can form the basis of new therapies, but the development path still takes years. This can raise a lot of questions. That is why we ask you to please refer questions in your report or article to the email address that VIB makes available for this purpose: [email protected]. Everyone can submit questions concerning this and other medically-oriented research directly to VIB via this address.

Media Contact
Katrina Wright
[email protected]

Tags: BiologyBiotechnologyMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    137 shares
    Share 55 Tweet 34
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    77 shares
    Share 31 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    55 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cachexia Index Predicts Gastric Cancer Impact

Non-Coding Lung Cancer Genes Found in 13,722 Chinese

Unraveling Mitophagy in Bronchopulmonary Dysplasia

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.