• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, July 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Visualizing “traffic jams” inside living cells

Bioengineer by Bioengineer
November 15, 2023
in Biology
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at the IBS Center for Molecular Spectroscopy and Dynamics (IBS CMSD), led by Director CHO Minhaeng and Professor HONG Seok-Cheol, have unveiled a revolutionary label-free microscopy technique – the “Cargo-Localization Interferometric Scattering (CL-iSCAT) Microscope.” This novel optical imaging method opens new routes in real-time tracking of intracellular cargo movement within living cells without the need for traditional fluorescent labeling.

Figure 1

Credit: Institute for Basic Science

Researchers at the IBS Center for Molecular Spectroscopy and Dynamics (IBS CMSD), led by Director CHO Minhaeng and Professor HONG Seok-Cheol, have unveiled a revolutionary label-free microscopy technique – the “Cargo-Localization Interferometric Scattering (CL-iSCAT) Microscope.” This novel optical imaging method opens new routes in real-time tracking of intracellular cargo movement within living cells without the need for traditional fluorescent labeling.

Understanding how intracellular cargo moves is crucial for unraveling the mysteries of a living cell, from its function and metabolism to its ultimate fate. Until now, scientists have relied on fluorescent microscopy to image intracellular cargoes and how they are localized within the cell’s cytoskeleton. However, traditional technology was able to observe only a limited number of specific cargos and is limited by the photobleaching of fluorescent labels. Consequently, visualizing the overall transport phenomena of countless cargos traveling along the intricate cellular scaffold using fluorescence-based methods has proven extremely challenging. The lack of a label-free microscopic technique capable of tracking millions of cargo indefinitely has long hindered our ability to understand the cellular cargo transport phenomena.

The newly developed CL-iSCAT Microscope addresses these challenges, allowing for label-free, real-time observation of cargo trafficking in the submicron cellular environment.   One feature that sets CL-iSCAT apart is its dual-modality system that integrates fluorescence imaging with iSCAT microscopy. This combination enabled separate observation of specifically labeled cargos or sub-cellular structures against countless unmarked cargos moving along the microtubular networks. The integration of the two complementary techniques is expected to facilitate innovative research in cell biology, thus deepening our understanding of biological phenomena that occur within the cells.

Director CHO Minhaeng lauded the significance of CL-iSCAT microscopy, stating, “Through the achievement of observing live cells at an ultra-high resolution independent of fluorescence, we have established a novel paradigm for elucidating the intricate details of biological processes.”

Prof. HONG Seok-Cheol, co-corresponding author of the study and professor at Korea University, added, “The development of an imaging technology enabling high-resolution and rapid observation of biological processes allows for an in-depth understanding of life from a molecular dynamics perspective. Our new approach of long-term visualization holds great potential for groundbreaking medical discovery.”

With this new tool at their disposal, the IBS researchers were able to selectively monitor the dynamic movement of active cargos within living cells. They used time-differential image analysis to precisely monitor the movements of hundreds of cargos simultaneously over an extended period of time. By utilizing the huge localization data acquired from all cargo positions, they demonstrated the ability of CL-iSCAT microscopy to reconstruct the spatial distribution of microtubular networks in a high spatial resolution beyond the diffraction limit, allowing it to perform with a resolution of down to 15 nm.

The potential of this microscope is far-reaching. One of the grand challenges of our time is to investigate viral infection and monitor the effects of anti-viral vaccines and drugs in real time. Since the size of typical viruses is a few tens of nanometers, it will be possible for the CL-iSCAT to visualize the whole process from the onset of viral infection to cell death.

Surprisingly, the research team observed that cellular traffic phenomena remarkably mirror the real-life roadway traffic observed in human society. They uncovered many intriguing transport phenomena taking place during cargo movement, including traffic jams within a cell, collective migration, and hitchhiking for efficient cargo transport in uncharted cellular territories.

Director Cho said, “It is particularly fascinating to discover several typical traffic events experienced by city commuters in the highly complex cellular world but at micrometer scales. In the future, we aim to delve deeper into the efficient transport strategies adopted by cells to overcome these challenges in transportation and their relevance to cellular phenomena.”



Journal

Nature Communications

DOI

10.1038/s41467-023-42347-7

Method of Research

Experimental study

Subject of Research

Cells

Article Title

Long-term cargo tracking reveals intricate trafficking through active cytoskeletal networks in the crowded cellular environment

Article Publication Date

14-Nov-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

HIV-1 Nuclear Entry Hinges on Capsid and Pore

HIV-1 Nuclear Entry Hinges on Capsid and Pore

July 7, 2025
Soil Dryness: Timing and Impact on Photosynthesis

Soil Dryness: Timing and Impact on Photosynthesis

July 7, 2025

Heat Boosts FKF1 to Trigger Flowering Mechanisms

July 5, 2025

Systemin Activates Herbivore Defense via Unique Pathway

July 4, 2025

POPULAR NEWS

  • Zheng-Rong Lu

    Pancreatic Cancer Vaccines Eradicate Disease in Preclinical Studies

    75 shares
    Share 30 Tweet 19
  • Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    72 shares
    Share 29 Tweet 18
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    69 shares
    Share 28 Tweet 17
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evolving Deaminase Hotspots for Precise Cytosine Editing

HIV-1 Nuclear Entry Hinges on Capsid and Pore

Soil Dryness: Timing and Impact on Photosynthesis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.