• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Visibly transparent radiative cooler under direct sunlight

Bioengineer by Bioengineer
July 15, 2021
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: POSTECH

Since the Paris Climate Agreement that took effect in 2016, 121 countries have pledged to become carbon neutral by 2050 as the world tries to reduce its fuel consumption. The Korean government also unveiled its 2050 Carbon Neutral Strategy on December 7, 2020 and declared Carbon Zero, making transition to new and renewable energy a topic of conversation. Recently, a joint research team from POSTECH and Korea University has developed a radiative cooling material that can reduce energy consumption by selectively reflecting or transmitting sunlight.

A research team led by Professor Junsuk Rho, Ph.D. candidate Minkyung Kim, and Dr. Dasol Lee of POSTECH’s departments of mechanical engineering and chemical engineering, and a team led by Professor Heon Lee and Soomin of the Department of Materials Science and Engineering at Korea University have together developed a transparent radiative cooler that transmits visible light while reflecting near-infrared light, and radiates heat in the atmospheric window where the wavelength range is between 8 and 13 micrometers (μm). Recognized for its significance, this study was featured as the front cover paper of the latest issue of Advanced Optical Materials.

Radiative cooling is a technology that lowers the temperature of an object by absorbing less energy from the sun and emitting radiant heat. Conventional radiative cooling materials developed so far have been limited to transparent emitters that transmit all light under direct sunlight and opaque radiative coolers that reflect all solar energy. For this, transparency is an important characteristic in practical applications of radiative cooling, but the transmitted sunlight trapped in an inner space is generally the main cause of the increasing temperature.

The joint research team focused on developing a transparent radiative cooler to solve this problem. Taking advantage of the characteristics of light, the researchers proposed a material that can transmit visible light, reflect near-infrared light, and emit mid-infrared rays.

The radiative cooling material developed by the researchers in this study exhibits both transparency and radiative cooling effect by selectively reflecting near-infrared light. In an outdoor rooftop experiment, the researchers found that the interior temperature of the high-absorbing chamber in the cooler box was lowered by 14.4 °C and the temperature of the material itself was lowered by 10.1 °C even when paint was applied.

“The radiative cooler developed this time can be used as a window of a building or an observatory that needs to maintain transparency, or as a window in an amusement ride or a vehicle,” explained Professor Junsuk Rho of POSTECH. “It can even take on color because it retains its cooling effect when paint is applied to it.”

###

This research was conducted with the support from the Future Materials Discovery Program, Mid-Career Researcher Program, Global Frontier Project, Leading Research Center Program of the National Research Foundation funded by the Ministry of Science and ICT of Korea, the Global Ph.D. Fellowship of the Ministry of Education and the National Research Foundation of Korea, Green Science program funded by POSCO, and POSTECH’s PIURI Postdoctoral Fellowship.

Media Contact
Jinyoung Huh
[email protected]

Original Source

https://www.postech.ac.kr/eng/visibly-transparent-radiative-cooler-under-direct-sunlight/#post-22874

Related Journal Article

http://dx.doi.org/10.1002/adom.202002226

Tags: Chemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryMaterialsNanotechnology/MicromachinesOpticsParticle PhysicsResearch/DevelopmentTechnology/Engineering/Computer Science
Share13Tweet8Share2ShareShareShare2

Related Posts

Molecular Insights into Theileria Ovis in Sheep, Goats

Molecular Insights into Theileria Ovis in Sheep, Goats

August 11, 2025
Immune Checkpoint Inhibitor Drug Reactions Revealed

Immune Checkpoint Inhibitor Drug Reactions Revealed

August 11, 2025

Enteral Insulin’s Impact on Preterm Infant Microbiota

August 11, 2025

Giant “Inocle” Element Boosts Human Oral Microbiome

August 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    139 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    78 shares
    Share 31 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    57 shares
    Share 23 Tweet 14
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Molecular Insights into Theileria Ovis in Sheep, Goats

Immune Checkpoint Inhibitor Drug Reactions Revealed

Enteral Insulin’s Impact on Preterm Infant Microbiota

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.