• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Virginia Tech researchers developing new strategy to thwart Alzheimer’s

Bioengineer by Bioengineer
July 7, 2020
in Health
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Fralin Biomedical Research Institute scientist earns $2.8 million grant to study cerebrovascular changes during healthy and Alzheimer’s aging

IMAGE

Credit: Virginia Tech

Scientists often focus on abnormal accumulations of proteins called plaques in the brain in efforts to find a treatment for Alzheimer’s disease. But the effects of these plaques have not been clear.

Virginia Tech scientists are exploring how these deposits may be degrading the brain’s vascular system, which circulates blood, providing oxygen and glucose to the cells responsible for perception, movement, thinking, and memory, while also eliminating metabolic waste.

Supported by a new, five-year, $2.8 million National Institutes of Health grant awarded to Harald Sontheimer, a glial neurobiologist at the Fralin Biomedical Research Institute at VTC, scientists are probing changes caused by aging in the circulatory system in the normal brain and Alzheimer’s disease brain.

Alzheimer’s disease is an irreversible, progressive brain disorder that slowly destroys memory and thinking skills, and, eventually, the ability to carry out tasks, according to the National Institute on Aging. As the disease progresses, once-healthy neurons stop functioning, lose connections with other neurons, and die.

But instead of the ailing neurons, researchers with the Fralin Biomedical Research Institute Center for Glial Biology in Health, Disease and Cancer are focused on an abundant group of brain cells known for maintaining optimal brain health.

They are concentrating on a type of glial cell called astrocytes, which may become damaged by the amyloid plaques and unable to support the brain’s circulatory system and, ultimately, the neurons.

“We’re saying that the amyloid is not primarily toxic to neurons or the vascular system, but to the astrocytes,” said Sontheimer, who is a professor at the Fralin Biomedical Research Institute and the School of Neuroscience in the Virginia Tech College of Science. “As the amyloid impairs the astrocytes and their ability to regulate blood flow, the brain is starved of oxygen and energy, and therefore, neurons gradually die. In people we see conditions of memory loss and dementia. This whole decline is accelerated by the presence of amyloid in Alzheimer’s disease.”

In a healthy brain, microscopic blood vessels are surrounded by specialized smooth muscle cells that contract or relax to constrict or dilate the vessels to regulate the appropriate amount of blood flow to a given brain region based on demand. Astrocytes interact with blood vessels through specialized processes called “endfeet,” which cover almost the entire surface of the blood vessels.

“It was long believed that neurons somehow regulated this blood flow,” said Sontheimer, who is the director of the Center for Glial Biology in Health, Disease, and Cancer. “It turns out that astrocytes actually sense neuronal activity and release molecules to dilate these blood vessels to allow more blood, glucose, and oxygen to get to regions where they are most needed. Everyone had assumed that the amyloid itself is impairing the blood vessels, but it’s actually impairing the astrocytes.”

As an additional consequence, the blood vessel becomes leaky, representing a weakening of the blood brain barrier, which protects the brain from circulating toxins and other threats.

Under the grant, awarded by the National Institute of Aging, researchers at the glial biology center are studying a mouse model of a genetic form of Alzheimer’s disease — a rare type that is passed along in families that accounts for less than 5 percent of Alzheimer’s — and mice with a condition similar to what occurs in the presence amyloid plaque. Furthermore, scientists will compare normal aging with aging with Alzheimer’s-like conditions.

“As a control, we would like to look at what occurs during aging alone,” Sontheimer said. “We want to know at what point in time some of these normal processes break down naturally with aging and to what extent those declines may that be accelerated by Alzheimer’s.”

The scientists will isolate astrocytes in mice as they age from three months to two years in both the normal aging and Alzheimer’s aging.

With Michelle Olsen, an associate professor in the School of Neuroscience in the College of Science and affiliated with the research institute’s Center for Glial Biology in Health, Disease, and Cancer, the scientists will pinpoint genes and proteins specifically in astrocytes that are changing to cause negative effects.

“The hope is we’ll discover something completely unsuspected — a protein or a signaling pathway that no one had thought about — that could then be potentially targeted to develop a glia-centered therapy for Alzheimer’s disease,” Sontheimer said.

Symptoms of Alzheimer’s disease most often appear when people are in their mid-60s or older, although the rare familial form can appear at younger ages. Estimates vary, but experts suggest that more than 5.5 million Americans, most of them age 65 or older, may have dementia caused by Alzheimer’s.

“We certainly have the approach and the tools to understand glia and their potential contribution to blood vessel demise and Alzheimer’s disease,” said Tre Mills, a fourth-year student in Virginia Tech’s translational biology, medicine, and health graduate program, who is working on the project in the Sontheimer laboratory.

“If we can understand what’s happening in the beginning stages of the disease, we could prohibit the late stage phenomena, increase the health span, and either slow or stop the progression of Alzheimer’s altogether,” Mills said. “I really think we’re homing in on that mid-stage of people’s lives to prevent or slow down the progression of disease — and that would be phenomenal.”

###

Media Contact
John Pastor
[email protected]

Original Source

https://vtnews.vt.edu/articles/2020/07/alzheimer-fralinbiomed-0629.html

Tags: AgingAlzheimerBiologyCell BiologyMedicine/HealthMolecular Biologyneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Health Behavior Patterns in Chinese Women Aged 40+

October 11, 2025

Innovations in Hereditary Angioedema Treatment: Present & Future

October 11, 2025

Amino Acids and Microbiota: Key to Ulcerative Colitis Healing

October 11, 2025

Factors Influencing Complete Child Immunization in Ghana

October 11, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1209 shares
    Share 483 Tweet 302
  • New Study Reveals the Science Behind Exercise and Weight Loss

    102 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    97 shares
    Share 39 Tweet 24
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    87 shares
    Share 35 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Health Behavior Patterns in Chinese Women Aged 40+

Measuring AI: The Power of Algorithmic Generalization

Innovations in Hereditary Angioedema Treatment: Present & Future

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.