• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, March 7, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Utilizing a ‘krafty’ waste product: Toward enhancing vehicle fuel economy

Bioengineer by Bioengineer
November 5, 2020
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from Kanazawa University fine-tuned the chemical structure and mechanical performance of a substance that’s ordinarily burned in the paper industry as waste matter, for future use as a lightweight automotive structural material

IMAGE

Credit: Kanazawa University

Kanazawa, Japan – Given concerns over global climate warming, researchers are hard at work on minimizing the amount of fuel that we all use in everyday life. Reducing the weight of vehicles will lessen the amount of fuel required to power them, and put money back into your pocket.

In a study recently published in Chemical Engineering Journal, researchers from Kanazawa University have chemically modified an industrial waste product, and processed it into a possible lightweight structural material. This development may increase the fuel economy of private and commercial transportation.

The researchers started with Kraft lignin, a byproduct of a common wood pulping process. Paper mills usually burn Kraft lignin to generate power, because it’s difficult to use for anything except specialized purposes. Chemically processing Kraft lignin into a more useful material would improve the environmental sustainability of paper production.

“We performed a chemical modification of Kraft lignin polymer known as acetylation,” says first author László Szabó. “Optimizing the extent of acetylation was critical to our research effort.”

A controlled reaction was important for optimizing Kraft lignin’s ability to be compatible with another polymer called polyacrylonitrile, and thus prepare quality carbon fibers creating an engineered composite. If there’s too little–or too much–acetylation, the carbon fibers are of low quality.

“Our reaction was quite mild, producing only a rather benign side product–acetone–without changing the polydispersity of the Kraft lignin,” explains Kenji Takahashi, co-senior author. “We thus were able to mix Kraft lignin with polyacrylonitrile to obtain a dope solution for electrospinning containing more compatible polymer segments and eventually fabricate quality carbon fibers.”

The researchers’ carbon fiber mats contain fine uniform fibers, without the thermal treatment lessening fiber quality. In fact, compared with unmodified Kraft lignin, by using the modified polymer the fiber mat exhibited an almost 3-fold improvement in mechanical strength.

“Our fibers’ mechanical performance is attributable to the tailored graphitic structure of the materials,” explains Szabó. “This outcome is owing to the improved polymer interactions leading to a more aligned polymeric network which is then subjected to the thermal treatment.”

Engineered composites are common in spacecraft, cars, plastic, concrete, and many other products and technologies. When these researchers minimize the cost of preparing their new carbon fibers, perhaps vehicles of the future will be lighter, more durable, and more fuel-efficient. Given that every industry uses transportation, everyone will save money and every business will be more environmentally sustainable.

###

Media Contact
Tomoya Sato
[email protected]

Original Source

https://www.sciencedirect.com/science/article/pii/S1385894720327686?via%3Dihub

Related Journal Article

http://dx.doi.org/10.1016/j.cej.2020.126640

Tags: Chemistry/Physics/Materials SciencesMaterialsPolymer Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Study shows cactus pear as drought-tolerant crop for sustainable fuel and food

March 5, 2021
IMAGE

Christopher Tunnell wins NSF CAREER Award

March 5, 2021

Tantalizing signs of phase-change ‘turbulence’ in RHIC collisions

March 5, 2021

Species are our livelihoods

March 5, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    668 shares
    Share 267 Tweet 167
  • People living with HIV face premature heart disease and barriers to care

    84 shares
    Share 34 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    39 shares
    Share 16 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    36 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Climate ChangecancerMaterialsCell BiologyChemistry/Physics/Materials SciencesBiologyTechnology/Engineering/Computer ScienceInfectious/Emerging DiseasesPublic HealthEcology/EnvironmentMedicine/HealthGenetics

Recent Posts

  • “Magic sand” might help us understand the physics of granular matter
  • Study reveals how egg cells get so big
  • Survey identifies factors in reducing clinical research coordinator turnover
  • New ‘split-drive’ system puts scientists in the (gene) driver seat
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In