• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

UTEP fights superbugs with $1.2 Million NIH grant to produce antibiotics

Bioengineer by Bioengineer
February 2, 2021
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: J.R. Hernandez / UTEP Communications

EL PASO, Texas – Chu-Young Kim, Ph.D., associate professor of chemistry and biochemistry at The University of Texas at El Paso, is helping combat the threat of superbugs – illnesses caused by drug-resistant bacteria – by returning to nature.

His work is supported by a $1.2 million grant from the National Institutes of Health (NIH) to develop a biological method for producing new versions of current antibiotics that have become ineffective due to resistance.

Superbugs are a major problem threatening the lives and health of people worldwide. A 2019 report by the Centers for Disease Control and Prevention states that more than 2.8 million antibiotic-resistant infections occur in the United States each year, and more than 35,000 people die as a result.

Kim said that the development of new antibiotics is essential since many are rapidly becoming less useful due to resistance. Rather than attempt to create entirely new compounds, Kim and his research team are taking drugs that already exist and modifying their chemical structure so that they retain the antibacterial activity but overcome resistance.

“Antibiotic drug resistance represents a real health threat,” said Robert Kirken, Ph.D., dean of the College of Science. “Over the past several decades we have seen little drug development in this area until recently. The work by Dr. Kim will help us stay one step ahead of these infections that kill tens of thousands of Americans each year.”

Traditionally, scientists modify drug molecules using chemical methods. Penicillin is one example of a drug that has seen enhanced versions developed throughout the years. However, Kim said that most antibiotics have structures that are more complex than penicillin. Thus, using chemicals to prepare new versions of these drugs would take years and the yield would be very low, making it impractical from a commercial standpoint and unaffordable for patients.

“What we are doing is, instead of chemically modifying the drug molecules as it is traditionally done, we’re going back to the original microorganisms that synthesize these antibiotics in the first place,” Kim said. For example, penicillin is produced by a fungus and echinomycin is derived from a soil bacterium. The research team will study how nature generates these complex molecules.

“Our ultimate goal is to use that knowledge to engineer microorganisms by mutating their DNA so that they produce a modified antibiotic that is effective against superbugs,” Kim said. “By doing it this way, we can produce very large quantities of the drug via fermentation and provide it to patients at an affordable price.”

Kim and his research team of undergraduate and graduate students will focus their efforts on studying how bacteria produce a natural product antibiotic called lasalocid. This drug requires nine enzymes – proteins that perform chemical transformations – to work together for bacteria to synthesize the antibiotic.

###

Media Contact
Victor Ricardo Martinez
[email protected]

Tags: BiochemistryChemistry/Physics/Materials SciencesEcology/Environment
Share12Tweet8Share2ShareShareShare2

Related Posts

Rice membrane extracts lithium from brine faster and with reduced waste

Rice membrane extracts lithium from brine faster and with reduced waste

October 2, 2025
blank

Pseudokinases Drive Peptide Cyclization via Thioether Crosslinking

October 2, 2025

MIT Researchers Develop Simple Formula to Enhance Fast-Charging, Durable Batteries

October 2, 2025

Registration and Scientific Program Now Open for Upcoming Plasma Physics Conference

October 2, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    92 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    84 shares
    Share 34 Tweet 21
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Metric Method Boosts Italian Sex Estimation

Revolutionizing Genomics with Integrated Memristor Technology

Cutting-Edge Care: New Regional Training Hub Enhances Surgical Skills for an Ageing Population

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.