• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

UTA researchers investigating ‘smart’ helmets that could detect brain injuries

Bioengineer by Bioengineer
March 10, 2021
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Protective gear for the battlefield and beyond

IMAGE

Credit: UT Arlington

A University of Texas at Arlington researcher is investigating the capabilities of “smart” protective helmets that could sense head and brain injuries and allow soldiers to more rapidly receive medical treatment.

Ashfaq Adnan, a mechanical and aerospace engineering professor, has received a three-year, $1.1 million grant from the Office of Naval Research (ONR) to study “smart” protective equipment in a dynamic environment. Kamesh Subbarao, a mechanical and aerospace engineering professor, is a co-principal investigator on the project.

“Our research will focus on the interface between the helmet and the brain and how to use smart sensing to recognize brain trauma,” Adnan said. “If we are successful, the results generated from this study will pave the way for the development of smart helmets to better ensure the well-being of soldiers in combat. We are hoping not only to prevent brain injuries, but to be able to promptly detect situations in which a brain injury may have occurred.

“I am thankful to ONR and Dr. Timothy Bentley, program manager and deputy of ONR’s Force Health Protection program, for supporting our research ideas.”

Adnan will use equipment purchased through previous grants for the study, including a realistic “phantom” head model and high-speed cameras capable of capturing images at up to 10 million frames per second. He will trap living neuron cells inside the head model, then cover the head with a protective layer laden with sensors, including an electroencephalogram to track brain activity and pressure and acceleration sensors to capture when a traumatic event occurs.

He will subject the model to various impact forces, rapid acceleration and deceleration, and sonic and laser waves. Then Adnan and Subbarao will capture photos of the high-speed dynamics within the model to show both the damage and how trauma transmits from the skull through the brain in real time.

“Dr. Adnan’s research is providing insight into how traumatic brain injuries propagate,” said Erian Armanios, chair of the Mechanical and Aerospace Engineering Department. “This insight will accelerate progress in the development of efficient protective gear on the battlefield and beyond.”

Adnan has earned ONR grants exceeding $4 million in support of his research involving blast-induced traumatic brain injury.

He previously published research determining that, under certain circumstances, the mechanical forces of a blast-like event could damage the perineuronal net located adjacent to the neurons, which could in turn damage the neurons themselves.

He and his team simulated a shock wave-induced cavitation collapse within the perineuronal net, which is a specialized extracellular matrix that stabilizes synapses in the brain. The team focused on the damage in the hyaluronan–the net’s main structural component–showing that the localized supersonic forces created by an asymmetrical bubble collapse may break it. This improved current knowledge and understanding of the connection between damage to the perineuronal net and neurodegenerative disorders.

###

– Written by Jeremy Agor, College of Engineering

Media Contact
Herb Booth
[email protected]

Original Source

https://www.uta.edu/news/news-releases/2021/03/09/adnan-smart-helmet

Tags: Biomedical/Environmental/Chemical EngineeringBiotechnologyMechanical EngineeringTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

New Risk Score Predicts Gastric Cancer

November 22, 2025
Eco-Friendly ZnO Nanoparticles: Synthesis, Properties, and Applications

Eco-Friendly ZnO Nanoparticles: Synthesis, Properties, and Applications

November 22, 2025

Microbial Copper Extraction from Waste Resins and Slags

November 22, 2025

Smart Transfer Learning for Battery Charge Estimation

November 22, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    202 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    92 shares
    Share 37 Tweet 23
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    211 shares
    Share 84 Tweet 53

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Risk Score Predicts Gastric Cancer

Eco-Friendly ZnO Nanoparticles: Synthesis, Properties, and Applications

Microbial Copper Extraction from Waste Resins and Slags

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.