• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, December 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Using sound waves to remotely target drugs to tumors

Bioengineer by Bioengineer
November 12, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers have combined an ultrafast ultrasound imaging system with ultrasonic tweezers to track, trap and target drug carriers within a phantom blood vessel

IMAGE

Credit: Qifa Zhou


WASHINGTON, D.C., November 12, 2019 — The lack of a clinically viable method to track and direct cancer drugs to tumors is a big problem for targeted therapeutics.

But a new ultrasonic method proposed by biomedical engineers from Qifa Zhou’s team at the University of Southern California in Los Angeles could enable acoustic control and real-time tracking of drug release within the body. The researchers report on their manipulation of ultrasonic waves to pinpoint drug delivery in Applied Physics Letters, from AIP Publishing.

“In conventional drug delivery, tissue is examined ex vivo under the microscope, or radioactive materials are used to trace drugs in vivo. We propose a new way to image and move the drug precisely inside the human body by combining the new plane wave imaging method with a focused ultrasound transducer,” said post-doctoral researcher Xuejun Qian.

Accurate drug delivery is crucial to ensure tumor obliteration, while avoiding the toxic side effects of cancer therapeutics on healthy tissue. Ultrasound is a popular method for noninvasively imaging inside the body. But because the conventional method lacks sensitivity, it has not been used in drug delivery previously. Zhou’s team adapted a new, ultrafast ultrasound method that eliminates background noise to accurately track a drug delivery vehicle within a phantom blood vessel.

Hanmin Peng, a visiting scholar from Nanjing University of Aeronautics & Astronautics, China, and co-workers pumped water through a narrow silicone tube to mimic blood flow through a blood vessel. They placed the tube beneath real pig tissue and imaged across this to make the setup more realistic. Microbubbles, tiny pockets of air, that can be used as vehicles for drug delivery were introduced into the fake blood vessels.

In recent years, there’s been much excitement over the ability to focus sound waves into “acoustic tweezers,” which can manipulate particles. Zhou’s team applied a focused ultrasound transducer to trap the microbubbles identified by their ultrafast imaging system.

The team predicted microbubble motion and calculated the acoustic radiation forces required to trap and move the bubbles to specific areas in the phantom blood vessel.

By balancing the acoustic radiation force from the transducer, the team moved the trapped microbubbles to a specific location on the tube wall and turned up the acoustic power to burst the bubbles.

Ultrasound waves vibrate the air contained within microbubbles, which enabled Peng and co-workers to use their novel ultrafast ultrasound imaging system to precisely track the microbubbles at depths of up to 10 millimeters within the tissue. They hope this combination of ultrasound tracking and targeting can be translated to noninvasively directing drug-containing microbubbles to blood vessels adjacent to tumor locations in the body.

“We want to try in vivo studies on rat or rabbit to see whether the proposed method can monitor and release microbubble-based drug delivery in a real body,” said Qian. “We hope to further improve the imaging resolution, sensitivity and speed within a real case, and if it works, the long-term goal would be to move towards a human study.”

###

The article, “Ultrafast ultrasound imaging in acoustic microbubble trapping,” is authored by Hanmin Peng, Xuejun Qian, Linli Mao, Laiming Jiang, Yizhe Sun and Qifa Zho. The article will appear in Applied Physics Letters on Nov. 12, 2019 (DOI: 10.1063/1.5124437). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/1.5124437.

ABOUT THE JOURNAL

Applied Physics Letters features rapid reports on significant discoveries in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See https://aip.scitation.org/journal/apl.

Media Contact
Larry Frum
[email protected]
301-209-3090

Related Journal Article

http://dx.doi.org/10.1063/1.5124437

Tags: AcousticsBiologyBiomechanics/BiophysicsBiotechnologycancerChemistry/Physics/Materials SciencesMedicine/HealthTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

December 19, 2025
Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

December 11, 2025

Photoswitchable Olefins Enable Controlled Polymerization

December 11, 2025

Cation Hydration Entropy Controls Chloride Ion Diffusion

December 10, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Agentic AI in SMMEs: A Bibliometric Study

Enhancing Nursing Curriculum with Spirituality and Inclusion

Managing Acute Pain and Delirium in Seniors

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.