• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Using 3D to test personalised treatments in five days

Bioengineer by Bioengineer
May 21, 2019
in Cancer
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

UNIGE researchers have developed a cell co-culture platform that can reproduce a patient’s tumour in 3D and test the best treatment combinations for its specific case in just five days

IMAGE

Credit: © UNIGE, Molecular Pharmacology Group

Why doesn’t the same treatment work in the same way for every patient? How can a drug’s performance be optimised without causing side effects due to an excessive dosage? In an attempt to answer these questions, researchers at the University of Geneva (UNIGE), Switzerland, have devised a cell co-culture platform that reproduces a patient’s tumour structure in 3D. The scientists can use it to test several drugs or their combinations at different stages of the tumour’s development. They now need only five days to identify which treatment will be most effective for a particular case, and the combination can then be translated for clinical practice. These results are highly promising for the future of personalised medicine, and you can read all about the outcomes in the journal Scientific Reports.

Colorectal cancer is the third most common form of cancer diagnosed today and the fourth most deadly in the world: 1.4 million people are affected each year, with 700,000 fatalities. A range of treatments is available, including chemotherapy, but the high dosages cause numerous side effects and patients commonly develop resistance. These treatments are currently tested on 2D tumour cell cultures before being administered to patients. “But that doesn’t correspond to reality,» explains Patrycja Nowak-Sliwinska, a professor at the School of Pharmaceutical Sciences at the UNIGE’s Faculty of Science. “Not only does a tumour develop in 3D, but it also contains other types of cells, such as fibroblasts (tissues) and endothelial cells (blood vessels).” As a result, the Geneva-based scientists have built a new platform that uses a patient’s tumour cell lines to recreate the tumour in 3D. It also keeps it alive, so that the impact of the treatments can be analysed during the different stages of its development.

To each patient, his or her own tumour

The team headed by professor Nowak-Sliwinska, in collaboration with groups led by Didier Colin (HUG) and Olivier Dormond (CHUV), selected six cell lines derived from six different patients. The cells were stabilised in a hollow, U-shaped culture plate so that they stayed agglomerated and floated in a cell culture medium optimised to feed the tumour. “The structure can then be organised by itself in 3D and continue its development,” says professor Nowak-Sliwinska. “The three types of cells that make up the tumour carry on interacting with each other, as though they were in the patient’s body.”

Three drugs better than one

The researchers then tested several different combinations of three approved drugs at different developmental stages of the cultured tumours. “Our first observation was that each patient responded differently to the same combination, demonstrating that it’s impossible to reach similar efficacy for each patient with the same treatment. It needs to be considered on a case-by-case basis,” says professor Nowak-Sliwinska. The scientists also found that a low-dose combination of three drugs was much more effective than a high-dose of one drug alone. “Treatment resistance and side effects occur when the dose is too high. Combining several drugs at low doses helps to circumvent this problem and improve treatment responses,” says the professor.

Personalised treatments in five days

The new platform opens the door to personalised medicine. “By extracting a cell line from the patient’s tumour, we can recreate the tumour in 3D on our platform and test the different drug combinations directly on that specific tumour. We can then select the optimal treatment for that particular patient”, continues professor Nowak-Sliwinska. This meticulous work takes five days on average, a short enough time to act quickly against the cancer. “In this instance, we’re interested in colorectal cancer but this platform, which is easy to reproduce, can obviously be used for all kinds of tumours at a relatively low cost,” says Nowak-Sliwinska by way of conclusion.

###

Media Contact
Patrycja Nowak-Sliwinska
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41598-019-42836-0

Tags: cancerClinical TrialsMedicine/HealthPharmaceutical ChemistryPharmaceutical Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Trophoblast and Folate Receptors in Uterine Carcinosarcoma

November 25, 2025

Quercetin Halts Gastric Cancer via IDO1 Pathway

November 25, 2025

Extracellular Vesicles: Cancer Insights and Therapeutic Potential

November 25, 2025

Novel Aromatase Inhibitors for Breast Cancer

November 25, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    93 shares
    Share 37 Tweet 23
  • Scientists Create Fast, Scalable In Planta Directed Evolution Platform

    98 shares
    Share 39 Tweet 25

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Maternal Gut Drives Newborn Antibiotic-Resistant Bacteria

IGF2BP3/IL6ST/STAT3 Loop Accelerates Colorectal Cancer Progression

Unlocking Biomarkers for Platinum Resistance in Ovarian Cancer

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.