• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Ural Federal University scientists developed a new way of synthesis of high-purity zircon

Bioengineer by Bioengineer
February 5, 2021
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The synthesized zircon can be used for storage and disposal of radioactive waste; Furthermore, the unusual material, can be used as a reference sample in mineralogical studies

IMAGE

Credit: Ural Federal University

The scientific novelty of the work of scientists from Ural Federal University, Institute of Solid State Chemistry and Geology and Geochemistry of the Ural Branch of the Russian Academy of Sciences lies in the fact that for the first time scientists solved the task of creating zircon with certain spectral properties. To this end, they have worked out the so-called sol-gel method.

It is distinguished by its technological simplicity, controllability of processes and allows synthesizing a larger volume of products with high purity than with other methods.

First, from carbonate of zirconium metal and an organosilicon compound, they obtained a sol – a dispersed medium with the presence of small solid particles, from it – a colloidal system, then, after drying and grinding, a precursor powder of a high degree of homogeneity, which was subjected to further grinding and calcination.

Second, it was found that upon mechanical stirring and sequential annealing – heating to 1550 ° C and further cooling the precursor to room temperature – the number of defects in the synthesized sample decreases and its high purity is achieved.

The range of applications of zircon obtained by the scientists from Yekaterinburg is very wide. Due to its high melting point (above 2000 ° C), chemical resistance, mechanical strength, low expansion coefficient at high temperatures and low thermal conductivity, zircon is useful as a refractory material (for example, for the manufacture of industrial furnaces) and a pigment for the production of heat-resistant paints. The presence of impurities and defects in the structure allows us to consider it as a standard for studying the mechanisms of defect formation in natural zircon crystals.

“Even a small concentration of impurities, such as iron, manganese, titanium, rare earth elements, significantly affects the luminescent properties of zircon, in some cases, the impurities enhance the glow in a certain range of electromagnetic waves. In other words, with the help of impurities, you can give zircon the necessary luminescent properties and use it as a phosphor or to detect the level of radiation damage, since the structure of zircon well “remembers” the radiation dose that it received, ” says Dmitry Zamyatin, senior researcher, Research Laboratory “EXTRA TERRA CONSORTIUM”, UrFU Institute of Physics and Technology.

Furthermore, the synthetic zircon matrix is able to contain large amounts of uranium and thorium. This allows the synthesized zircon to be used as a container for long-term storage and disposal of radioactive elements.

###

Media Contact
Evgeniya Saburova
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.jssc.2020.121783

Tags: Chemistry/Physics/Materials SciencesGeology/SoilIndustrial Engineering/ChemistryParticle Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Scientists Create Molecule Advancing Key Step in Artificial Photosynthesis

August 25, 2025
blank

First-ever observation of the transverse Thomson effect unveiled

August 23, 2025

Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

August 23, 2025

New Molecular-Merged Hypergraph Neural Network Enhances Explainable Predictions of Solvation Gibbs Free Energy

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    139 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mediterranean Diet Found to Mitigate Genetic Risk of Alzheimer’s Disease

Acacia Saligna Seed Meal: A Soy Replacement for Broilers

Microdamage and Repair in Biological Hard Tissues

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.