• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Upgrade of a research IceCube

Bioengineer by Bioengineer
July 16, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: IceCube/NSF

The IceCube Neutrino Observatory in Antarctica is about to get a significant upgrade. This huge detector consists of 5,160 sensors embedded in a 1x1x1 km volume of glacial ice deep beneath the geographic South Pole. The purpose of this huge installation is to detect neutrinos, the “ghost particles” of the Universe. The IceCube Upgrade will add more than 700 new and enhanced optical sensors in the deepest, purest ice, greatly improving the observatory’s ability to measure low-energy neutrinos produced in the Earth’s atmosphere. The research in neutrinos at the Niels Bohr Institute, University of Copenhagen is led by Associate Professor Jason Koskinen

The upgrade is necessary for the development of a new field of research

“The current IceCube detector is providing leading results in astrophysics and particle physics, specifically measurements of neutrino oscillations by researchers in Copenhagen, but can only take us so far. When neutrinos “oscillate”, they change “flavour” – and actually change properties. Through a truly international effort, this new detector is going to be a huge leap forward in our ability to understand the fundamental properties of the neutrino in ways that no other project in the world can do now”, says D. Jason Koskinen, Associate Professor and leader of the local IceCube research group at the Niels Bohr Institute.

Neutrino oscillations – creating a new neutrino vision

The principal goal of this first IceCube extension is to perform precision studies of the strange phenomenon known as ‘neutrino oscillation’, where neutrinos produced as one type may ‘oscillate’ to another as they travel. The sensitivity of the upgraded detector will allow scientists at NBI and worldwide to test if neutrinos only oscillate between the three known types, or if there are also new and as yet undiscovered neutrino types participating. These new neutrino types are predicted by the leading theories seeking to explain the unimaginably tiny masses neutrinos possess.

Additionally, the upgrade will include an advanced suite of the calibration devices, designed to better characterise the properties of the glacier ice. This will allow scientists to more accurately pin-point the distant and violent sources of the high energy astrophysical neutrinos IceCube has discovered.

This upgrade will not only offer huge advances in fundamental neutrino physics and astrophysics, but will pave the way for a future expansion of the entire observatory to 10 times the size, opening a new era in neutrino astronomy.

###

Links to further information here:

https://icecube.nbi.ku.dk/

Media Contact
Jason Koskinen
[email protected]

Tags: AstrophysicsAtomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesGeophysicsParticle PhysicsSpace/Planetary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Selective Arylating Uncommon C–F Bonds in Polyfluoroarenes

October 4, 2025
Building Larger Hydrocarbons for Optical Cycling

Building Larger Hydrocarbons for Optical Cycling

October 4, 2025

Scientists Discover How Enzymes “Dance” During Their Work—and Why It Matters

October 4, 2025

Electron Donor–Acceptor Complexes Enable Asymmetric Photocatalysis

October 4, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    92 shares
    Share 37 Tweet 23
  • New Insights Suggest ALS May Be an Autoimmune Disease

    71 shares
    Share 28 Tweet 18
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary Memory Network Models Ionic-Electronic Interactions

New Survey Reveals Most Americans Recognize Life-Saving Power of Plasma Donation, But Few Have Participated

Exploring Physician Impact on Patient Length of Stay

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.